Green Extraction of Phenolic Acids from Artemisia argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic Conditions and Method Validation
2.2. Screening of DESs for the Extraction of Phenolic Acids from AL
2.2.1. Extraction of Phenolic Acids by Binary DESs
2.2.2. Extraction of Phenolic Acids by Ternary DESs
2.3. Optimization of the Extraction Parameters for Phenolic Acids
3. Materials and Methods
3.1. Materials and Reagents
3.2. HPLC Analysis
3.3. Preparation of DESs
3.4. Extraction of Phenolic Acids From AL
3.5. DESs Tailoring
3.6. Optimization of the DES Extraction Parameters for Phenolic Acids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia, Genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Ge, D.; Li, S.; Huang, K.; Liu, J.; Li, F. Chemical composition and antimicrobial activities of Artemisia argyi Lévl. et Vant essential oils extracted by simultaneous distillation-extraction, subcritical extraction and hydrodistillation. Molecules 2019, 24, 483. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, S.; Yang, W.; Meng, D. Gastro-protective effect of edible plant Artemisia argyi in ethanol-induced rats via normalizing inflammatory responses and oxidative stress. J. Ethnopharmacol. 2018, 214, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Xin, Z.; Ma, S.; Liu, W.; Zhang, B.; Ran, L.; Yi, L.; Ren, D. Comprehensive characterization and identification of antioxidants in Folium Artemisiae Argyi using high-resolution tandem mass spectrometry. J. Chromatogr. B 2017, 1063, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Mao, Y.; Deng, C.; Zhang, X. Separation and identification of volatile constituents in Artemisia argyi flowers by GC-MS with SPME and steam distillation. J. Chromatogr. Sci. 2008, 46, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, D.; Xue, Z.J.; Jiao, Q.; Liu, A.P.; Zheng, Y.G.; Liu, E.H.; Duan, L. Comparison of Artemisiae argyi Folium and Artemisiae lavandulaefoliae Folium by simultaneous determination of multi-components with single reference standard method and chemometric analysis. Phytochem. Anal. 2019, 30, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.O.; Lee, D.; Hiep, N.T.; Song, J.H.; Lee, H.J.; Lee, D.; Kang, K.S. Protective effect of phenolic compounds isolated from Mugwort (Artemisia argyi) against contrast-induced apoptosis in kidney epithelium cell line LLC-PK1. Molecules 2019, 24, 195. [Google Scholar] [CrossRef]
- Lee, D.; Kim, C.E.; Park, S.Y.; Kim, K.O.; Hiep, N.T.; Lee, D.; Jang, H.J.; Lee, J.W.; Kang, K.S. Protective effect of Artemisia argyi and its flavonoid constituents against contrast-induced cytotoxicity by iodixanol in LLC-PK1 cells. Int. J. Mol. Sci. 2018, 19, 1387. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Guo, X.; Xu, T.; Fan, L.; Zhou, X.; Wu, S. Ionic deep eutectic solvents for the extraction and separation of natural products. J. Chromatogr. A 2019. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H. DNA stability in ionic liquids and deep eutectic solvents. J. Chem. Technol. Biotechnol. 2015, 90, 19–25. [Google Scholar] [CrossRef]
- Fernández, M.L.Á.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trend Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food. Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Environmentally-friendly extraction of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves with deep eutectic solvents and evaluation of their antioxidant activities. Molecules 2018, 23, E2110. [Google Scholar]
- Duan, L.; Dou, L.L.; Guo, L.; Li, P.; Liu, E. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Jeong, K.M.; Lee, M.S.; Nam, M.W.; Zhao, J.; Jin, Y.; Lee, D.K.; Kwon, S.W.; Jeong, J.H.; Lee, J. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J. Chromatogr. A 2015, 1424, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Row, K.H. Application of natural deep eutectic solvents in the extraction of quercetin from vegetables. Molecules 2019, 24, 2300. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, Z.; de Maria, P.D. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Adv. 2012, 2, 421–425. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124907. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, H.; Zhang, W.; Cao, F.; Ma, G.; Su, E. Tailor-made deep eutectic solvents for simultaneous extraction of five aromatic acids from Ginkgo biloba leaves. Molecules 2018, 23, 3214. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Ping, K.; Jiang, Y.W.; Wang, L.T.; Niu, L.J.; Liu, Z.M.; Fu, Y.J. Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction. Food Chem. 2019, 296, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, M.; Tan, T.; Yan, A.; Guo, L.; Jiang, K.; Tan, C.; Wan, Y. Deep eutectic solvents used as extraction solvent for the determination of flavonoids from Camellia oleifera flowers by high-performance liquid chromatography. Phytochem. Anal. 2018, 29, 639–648. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Cheng, Q.; Wang, L.; Zhang, L. Deep eutectic solvent-based ultrahigh pressure extraction of baicalin from Scutellaria baicalensis Georgi. Molecules 2018, 23, 3233. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, W.H.; Zhang, Z.H.; Liu, E.H.; Guo, L. Evaluation of natural deep eutectic solvents for the extraction of bioactive flavone C-glycosides from flos trollii. Microchem. J. 2018, 145, 180–186. [Google Scholar] [CrossRef]
Sample Availability: Samples of Artemisia argyi leavesare available from the authors. |
NO. | Abbreviation | Component 1 | Component 2 | Molar Ratio |
---|---|---|---|---|
BD-1 | ChCl-Ma | choline chloride | dl-malic acid | 1:1 |
BD-2 | ChCl-Ur | choline chloride | urea | 1:2 |
BD-3 | ChCl-Ga | choline chloride | glutaric acid | 1:1 |
BD-4 | ChCl-Pa | choline chloride | propanedioic acid | 1:1 |
BD-5 | ChCl-Eg | choline chloride | ethylene glycol | 1:3 |
BD-6 | ChCl-Gl | choline chloride | glycerol | 1:2 |
NO. | Abbreviation | Component 1 | Component 2 | Component 3 | Molar Ratio | Extraction Yield of Four Phenolic Acids (mg/g) |
---|---|---|---|---|---|---|
TD-1 | ChCl-Ma-Ur | choline chloride | DL-malic acid | urea | 2:1:1 | 21.92 ± 0.04 |
TD-2 | ChCl-Ma-Ur | choline chloride | DL-malic acid | urea | 2:2:1 | 22.26 ± 0.04 |
TD-3 | ChCl-Ma-Ur | choline chloride | DL-malic acid | urea | 2:1:2 | 22.43 ± 0.02 |
TD-4 | ChCl-Ma-Ga | choline chloride | DL-malic acid | glutaric acid | 2:1:1 | 21.41 ± 0.04 |
TD-5 | ChCl-Ma-Ga | choline chloride | DL-malic acid | glutaric acid | 2:2:1 | 21.89 ± 0.02 |
TD-6 | ChCl-Ma-Pa | choline chloride | DL-malic acid | propanedioic acid | 2:2:1 | 20.81 ± 0.06 |
TD-7 | ChCl-Ma-Pa | choline chloride | DL-malic acid | propanedioic acid | 2:1:1 | 21.30 ± 0.05 |
TD-8 | ChCl-Ma-Pa | choline chloride | DL-malic acid | propanedioic acid | 1:1:1 | 21.55 ± 0.04 |
TD-9 | ChCl-Ma-Pa | choline chloride | DL-malic acid | propanedioic acid | 2:1:2 | 22.08 ± 0.03 |
TD-10 | ChCl-Ma-Eg | choline chloride | DL-malic acid | ethylene glycol | 1:2:0.5 | 21.67 ± 0.04 |
TD-11 | ChCl-Ma-Eg | choline chloride | DL-malic acid | ethylene glycol | 2:2:1 | 22.12 ± 0.05 |
TD-12 | ChCl-Ma-Gl | choline chloride | DL-malic acid | glycerol | 1:2:0.5 | 20.02 ± 0.02 |
TD-13 | ChCl-Ma-Gl | choline chloride | DL-malic acid | glycerol | 2:2:1 | 20.09 ± 0.04 |
Run | Factors | Responses | ||
---|---|---|---|---|
Extraction Time (A, min) | Liquid–Solid Ratios (B, mL/g) | Water Content (C, %) | Total Extraction Amounts of Four Phenolic Acids (mg/g) | |
1 | 24.0 | 37.5 | 45 | 22.60 |
2 | 40.0 | 57.5 | 45 | 22.61 |
3 | 24.0 | 17.5 | 20 | 18.47 |
4 | 8.0 | 37.5 | 20 | 16.13 |
5 | 24.0 | 37.5 | 45 | 22.10 |
6 | 40.0 | 17.5 | 45 | 21.96 |
7 | 24.0 | 57.5 | 70 | 20.85 |
8 | 24.0 | 37.5 | 45 | 21.40 |
9 | 8.0 | 57.5 | 45 | 22.34 |
10 | 24.0 | 17.5 | 70 | 18.86 |
11 | 24.0 | 57.5 | 20 | 15.51 |
12 | 24.0 | 37.5 | 45 | 22.65 |
13 | 8.0 | 17.5 | 45 | 21.27 |
14 | 40.0 | 37.5 | 70 | 19.84 |
15 | 24.0 | 37.5 | 45 | 22.02 |
16 | 8.0 | 37.5 | 70 | 20.06 |
17 | 40.0 | 37.5 | 20 | 17.00 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 86.54 | 9 | 9.62 | 32.38 | <0.0001 | significant |
A | 0.32 | 1 | 0.32 | 1.08 | 0.3323 | |
B | 0.073 | 1 | 0.073 | 0.24 | 0.6359 | |
C | 19.53 | 1 | 19.53 | 65.78 | <0.0001 | |
AB | 0.045 | 1 | 0.045 | 0.15 | 0.7085 | |
AC | 0.3 | 1 | 0.3 | 1.02 | 0.3468 | |
BC | 6.13 | 1 | 6.13 | 20.64 | 0.0027 | |
A2 | 0.08 | 1 | 0.08 | 0.27 | 0.6188 | |
B2 | 3.10 × 10−3 | 1 | 3.10 × 10−3 | 0.01 | 0.9215 | |
C2 | 59.51 | 1 | 59.51 | 200.42 | <0.0001 | |
Residual | 2.08 | 7 | 0.3 | |||
Lack of Fit | 1.04 | 3 | 0.35 | 1.34 | 0.3789 | not significant |
Pure Error | 1.04 | 4 | 0.26 | |||
R2 | 0.9765 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, L.; Zhang, C.; Zhang, C.; Xue, Z.; Zheng, Y.; Guo, L. Green Extraction of Phenolic Acids from Artemisia argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents. Molecules 2019, 24, 2842. https://doi.org/10.3390/molecules24152842
Duan L, Zhang C, Zhang C, Xue Z, Zheng Y, Guo L. Green Extraction of Phenolic Acids from Artemisia argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents. Molecules. 2019; 24(15):2842. https://doi.org/10.3390/molecules24152842
Chicago/Turabian StyleDuan, Li, Chenmeng Zhang, Chenjing Zhang, Zijing Xue, Yuguang Zheng, and Long Guo. 2019. "Green Extraction of Phenolic Acids from Artemisia argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents" Molecules 24, no. 15: 2842. https://doi.org/10.3390/molecules24152842
APA StyleDuan, L., Zhang, C., Zhang, C., Xue, Z., Zheng, Y., & Guo, L. (2019). Green Extraction of Phenolic Acids from Artemisia argyi Leaves by Tailor-Made Ternary Deep Eutectic Solvents. Molecules, 24(15), 2842. https://doi.org/10.3390/molecules24152842