Suitability of the Cyclic Voltammetry Measurements and DPPH• Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cyclic Voltammetry
2.2. Practical Issues Related to the Use of DPPH• Assay to Determine Antiradical Activity of Tannins
2.3. Antioxidant Activity of Tannins
3. Conclusion
4. Materials and Methods
4.1. Tannins
4.2. Chemicals and Reagents
4.3. DPPH• Assay
4.4. Cyclic Voltammetry
4.5. Data Processing
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaur, C.; Kapoor, H.C. Antioxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Vazallo-Valleumbrocio, G.; Medel-Marabolí, M.; Peña-Neira, Á.; López-Solís, R.; Obreque-Slier, E. Commercial enological tannins: Characterization and their relative impact on the phenolic and sensory composition of Carménère wine during bottle aging. LWT-Food Sci. Technol. 2017, 83, 172–183. [Google Scholar] [CrossRef]
- Vivas, N.; Bourgeois, G.; Vitry, C.; Glories, Y.; Freitas, V.D. Determination of the composition of commercial tannin extracts by liquid secondary ion mass spectrometry (LSIMS). J. Sci. Food Agric. 1996, 72, 309–317. [Google Scholar] [CrossRef]
- Obreque-Slíer, E.; Peña-Neira, A.; López-Solís, R.; Ramírez-Escudero, C.; Zamora-Marín, F. Phenolic characterization of commercial enological tannins. Eur. Food Res. Technol. 2009, 229, 859–866. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Parpinello, G.P.; Heymann, H.; Downey, M.O. Impact of exogenous tannin additions on wine chemistry and wine sensory character. Food Chem. 2012, 131, 999–1008. [Google Scholar] [CrossRef]
- Versari, A.; Toit, W.; Parpinello, G.P. Oenological tannins: A review. Aust. J. Grape Wine Res. 2013, 19, 1–10. [Google Scholar] [CrossRef]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Mattioli, A.U.; Teslić, N.; Kilmartin, P.A.; Versari, A. Antioxidant activity of commercial food grade tannins exemplified in a wine model. Food Addit. Contam. Part. A 2016, 33, 1761–1774. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar]
- Sànchez-Moreno, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Villaño, D.; Fernàndez-Pachòn, M.S.; Troncoso, A.M.; Garcìa-Parrilla, M.C. Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal. Chim. Acta 2005, 538, 391–398. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Olszowy, M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chem. 2012, 131, 1037–1043. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H.; Waterhouse, A.L. A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics. J. Agric. Food Chem. 2001, 49, 1957–1965. [Google Scholar] [CrossRef]
- Blasco, A.J.; Gonzàlez, M.A.C.; Escarpa, A. Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: Towards an electrochemical index of natural antioxidants. Anal. Chim. Acta 2004, 511, 71–81. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H.; Waterhouse, A.L. Correlation of wine phenolic composition versus cyclic voltammetry response. Am. J. Enol. Vitic. 2002, 53, 294–302. [Google Scholar]
- Gizdavic-Nikolaidis, M.; Travas-Sejdic, J.; Bowmaker, G.A.; Cooney, R.P.; Thompson, C.; Kilmartin, P.A. The antioxidant activity of conducting polymers in biomedical applications. Curr. Appl. Phys. 2004, 4, 347–350. [Google Scholar] [CrossRef]
- Cosio, M.S.; Buratti, S.; Mannino, S.; Benedetti, S. Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chem. 2006, 97, 725–731. [Google Scholar] [CrossRef]
- Bortolomeazzi, R.; Sebastianutto, N.; Toniolo, R.; Pizzariello, A. Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem. 2007, 100, 1481–1489. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Cheregi, M.C.; Danet, A.F. Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules 2009, 14, 480–493. [Google Scholar] [CrossRef]
- Cuartero, M.; Ortuño, J.A.; Truchado, P.; Garcìa, M.S.; Tomàs-Barberàn, F.A.; Albero, M.I. Voltammetric behaviour and square-wave voltammetric determination of the potent antioxidant and anticarcinogenic agent ellagic acid in foodstuffs. Food Chem. 2011, 128, 549–554. [Google Scholar] [CrossRef]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Pasrija, D.; Anandharamakrishnan, C. Techniques for extraction of green tea polyphenols: A review. Food Bioprocess Technol. 2015, 8, 935–950. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Palma, A.S.; Teslić, N.; Brilli, C.; Pizzi, A.; Versari, A. Analytical profiling of food-grade extracts from grape (Vitis vinifera sp.) seeds and skins, green tea (Camellia sinensis) leaves and Limousin oak (Quercus robur) heartwood using MALDI-TOF-MS, ICP-MS and spectrophotometric methods. J. Food Compos. Anal. 2017, 59, 95–104. [Google Scholar] [CrossRef]
- Ricci, A.; Lagel, M.C.; Parpinello, G.P.; Pizzi, A.; Kilmartin, P.A.; Versari, A. Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin. Food Chem. 2016, 203, 425–429. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.-I.; Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 1998, 56, 213–222. [Google Scholar] [CrossRef]
- de Freitas, V.A.; Glories, Y.; Bourgeois, G.; Vitry, C. Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry 1998, 49, 1435–1441. [Google Scholar] [CrossRef]
- de Gaulejac, N.S.C.; Vivas, N.; de Freitas, V.; Bourgeois, G. The influence of various phenolic compounds on scavenging activity assessed by an enzymatic method. J. Sci. Food Agric. 1999, 79, 1081–1090. [Google Scholar] [CrossRef]
- Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P.; Rice-Evans, C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 1995, 322, 339–346. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Soares, S.; Sousa, A.; Mateus, N.; de Freitas, V. Effect of condensed tannins addition on the astringency of red wines. Chem. Senses 2011, 37, 191–198. [Google Scholar] [CrossRef]
- Picariello, L.; Gambuti, A.; Picariello, B.; Moio, L. Evolution of pigments, tannins and acetaldehyde during forced oxidation of red wine: Effect of tannins addition. LWT-Food Sci. Technol. 2017, 77, 370–375. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are commercially available oenological tannins; analytical samples are available from the Authors G.P.P., A.R. and A.V. |
Samples | E (mV versus Ag/AgCl) | |||
---|---|---|---|---|
Ep,a | Ep,c | |||
(+)-Catechin, std | -_ | 389 | -_ | 354 |
Ellagic acid, std | -_ | 367 | -_ | -_ |
Gallic acid, std | -_ | 391 | -_ | -_ |
TN1 | -_ | 402 | -_ | -_ |
TN2 | 313 | 419 | 294 | 391 |
TN3 | 290 | 383 | -_ | 329 |
TN4 | -_ | 406 | -_ | _ |
TN5 | 308 | 406 | -_ | 337 |
TN6 | -_ | 384 | -_ | _ |
TN7 | -_ | 399 | -_ | 338 |
TN8 | 290 | 399 | -_ | 332 |
TN9 | -_ | 404 | -_ | -_ |
TN10 | -_ | 386 | -_ | -_ |
TN11 | -_ | 380 | -_ | -_ |
TN12 | -_ | 399 | -_ | 321 |
TN13 | -_ | 401 | -_ | -_ |
TN14 | -_ | 413 | -_ | 395 |
TN15 | -_ | 379 | -_ | -_ |
TN16 | -_ | 370 | -_ | -_ |
TN17 | -_ | 382 | -_ | -_ |
TN18 | -_ | 384 | -_ | 328 |
TN19 | -_ | 396 | -_ | -_ |
TN20 | -_ | 404 | -_ | -_ |
Samples | DPPH• Scavenging Kinetic Rates [0–60 min Incubation] |
---|---|
Code | % decrease Abs517 nm/min |
TN1 | 0.139 |
TN2 | 0.085 |
TN3 | 3.059 |
TN4 | 0.106 |
TN5 | 0.091 |
TN6 | 0.064 |
TN7 | 0.167 |
TN8 | 0.115 |
TN9 | 0.130 |
TN10 | 0.060 |
TN11 | 0.070 |
TN12 | 0.133 |
TN13 | 0.129 |
TN14 | 0.196 |
TN15 | 0.102 |
TN16 | 0.074 |
TN17 | 0.097 |
TN18 | 0.118 |
TN19 | 0.087 |
TN20 | 0.076 |
Samples | DPPH• Radical Scavenging (%) at the Steady State (24 h) | CV −200 mV to 500 mV |
---|---|---|
Code | % decrease Abs517 nm | mM CE |
TN1 | 49.8 ± 0.1 | 0.225 ± 0.001 |
TN2 | 83.4 ± 0.8 | 0.365 ± 0.008 |
TN3 | 47.0 ± 0.3 | 0.187 ± 0.006 |
TN4 | 51.5 ± 1.2 | 0.258 ± 0.008 |
TN5 | 48.5 ± 0.1 | 0.221 ± 0.008 |
TN6 | 69.3 ± 0.4 | 0.349 ± 0.002 |
TN7 | 70.9 ± 1.1 | 0.335 ± 0.006 |
TN8 | 59.1 ± 0.1 | 0.311 ± 0.002 |
TN9 | 63.8 ± 0.6 | 0.313 ± 0.005 |
TN10 | 30.2 ± 1.2 | 0.115 ± 0.004 |
TN11 | 38.2 ± 3.2 | 0.133 ± 0.007 |
TN12 | 40.9 ± 1.2 | 0.158 ± 0.008 |
TN13 | 55.0 ± 0.6 | 0.234 ± 0.007 |
TN14 | 74.6 ± 0.1 | 0.338 ± 0.006 |
TN15 | 53.9 ± 0.2 | 0.232 ± 0.011 |
TN16 | 52.0 ± 0.5 | 0.233 ± 0.004 |
TN17 | 50.0 ± 0.1 | 0.199 ± 0.003 |
TN18 | 62.8 ± 0.2 | 0.282 ± 0.005 |
TN19 | 57.0 ± 0.1 | 0.237 ± 0.003 |
TN20 | 51.1 ± 0.1 | 0.219 ± 0.003 |
Code | Chemical Classification | Botanical Origin |
---|---|---|
TN1 | Ellagitannin | White fruits tree wood |
TN 2 | Proanthocyanidin | Green tea |
TN 3 | Proanthocyanidin | Unknown |
TN 4 | Blend, not specified | Unknown |
TN 5 | Proanthocyanidin | Grape |
TN 6 | Ellagitannin | Chestnut heartwood |
TN 7 | Proanthocyanidin | Grape seed |
TN 8 | Blend: proanthocyanidin/ellagitannins | Unknown |
TN 9 | Blend: proanthocyanidin/ ellagitannin/gallotannin | Limousin French oak, tara, gall, green tea |
TN 10 | Ellagitannin | American oak |
TN 11 | Ellagitannin | French oak (Allier) |
TN 12 | Proanthocyanidin | Grape |
TN 13 | Blend: proanthocyanidin/ ellagitannin/gallotannin | Limousin French oak, gall, grape |
TN 14 | Not specified | Unknown |
TN 15 | Ellagitannin | French oak (Limousin) |
TN 16 | Ellagitannin | Selected Quercus woods |
TN 17 | Ellagitannin | French oak |
TN 18 | Ellagitannin | Red fruit tree wood |
TN 19 | Blend: proanthocyanidin/ ellagitannin/gallotannin | Tara, gall, green tea, ellagitannins from oak |
TN 20 | Ellagitannin | French oak (Allier) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, A.; Parpinello, G.P.; Teslić, N.; Kilmartin, P.A.; Versari, A. Suitability of the Cyclic Voltammetry Measurements and DPPH• Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins. Molecules 2019, 24, 2925. https://doi.org/10.3390/molecules24162925
Ricci A, Parpinello GP, Teslić N, Kilmartin PA, Versari A. Suitability of the Cyclic Voltammetry Measurements and DPPH• Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins. Molecules. 2019; 24(16):2925. https://doi.org/10.3390/molecules24162925
Chicago/Turabian StyleRicci, Arianna, Giuseppina Paola Parpinello, Nemanja Teslić, Paul Andrew Kilmartin, and Andrea Versari. 2019. "Suitability of the Cyclic Voltammetry Measurements and DPPH• Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins" Molecules 24, no. 16: 2925. https://doi.org/10.3390/molecules24162925
APA StyleRicci, A., Parpinello, G. P., Teslić, N., Kilmartin, P. A., & Versari, A. (2019). Suitability of the Cyclic Voltammetry Measurements and DPPH• Spectrophotometric Assay to Determine the Antioxidant Capacity of Food-Grade Oenological Tannins. Molecules, 24(16), 2925. https://doi.org/10.3390/molecules24162925