Assignment Through Chiroptical Methods of The Absolute Configuration of Fungal Dihydropyranpyran-4-5-Diones Phytotoxins, Potential Herbicides for Buffelgrass (Cenchrus ciliaris) Biocontrol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental VCD-IR, ECD-UV, and ORD
2.2. Absolute Configuration Assignment
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Strains
3.3. Isolation of Fungal Metabolites
3.4. Chiroptical Spectroscopies
3.5. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dayan, F.E.; Duke, S.O. Natural compounds as next generation herbicides. Plant Physiol. 2014, 166, 1090–1105. [Google Scholar] [CrossRef] [PubMed]
- Gerwick, B.C.; Sparks, T.C. Natural products for pest control: An analysis of their role, value and future. Pest Man. Sci. 2014, 70, 1169–1185. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Nat. Prod. Rep. 2015, 32, 1629–1653. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Meyer, S.; Clement, S.; Cimmino, A.; Cristofaro, M.; Evidente, A. Cochliotoxin, a dihydropyranopyran-4,5-dione, and its analogues produced by Cochliobolus australiensis display phytotoxic activity against buffelgrass (Cenchrus ciliaris). J. Nat. Prod. 2017, 80, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Abella, S.R.; Chiquoine, L.P.; Backer, D.M. Ecological characteristics of sites invaded by buffelgrass (Pennisetum ciliare). Invasive Plant Sci. Manag. 2012, 5, 443–453. [Google Scholar] [CrossRef]
- Bean, T.M. Tools for Improved Management of Buffelgrass in the Sonoran Desert. Ph.D. Dissertation, The University of Arizona, Phoenix, AZ, USA, 2014. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Handbook of Sustainable Weed Management; Singh, H.P., Batish, D.R., Kohli, R.K., Eds.; The Haworth Press Inc.: New York, NY, USA, 2006. [Google Scholar]
- Clarke, D.D.; Nord, F.F. Radicinin: A new pigment from Stemphylium radicinum. Arch. Biochem. Biophys. 1953, 45, 469–470. [Google Scholar] [CrossRef]
- Grove, J.F. Metabolic products of stemphylium radicinum. Part, I. Radicinin. J. Chem. Soc. 1964, 3234–3239. [Google Scholar] [CrossRef]
- Clarke, D.D.; Nord, F.F. Radicinin: A metabolite from Stemphylium radicinum. I. Chemistry and action. Archiv. Biochem. Biophys. 1955, 59, 269–284. [Google Scholar] [CrossRef]
- Nukina, M.; Marumo, S. Radicinol, a new metabolite of Cochliobolus lunata, and absolute stereochemistry of radicinin. Tetrahedron Lett. 1977, 37, 3271–3272. [Google Scholar] [CrossRef]
- Robeson, D.J.; Gray, G.R.; Strobel, G.A. Production of the phytotoxins radicinin and radicinol by Alternaria chrysanthemi. Phytochemistry 1982, 21, 2359–2362. [Google Scholar] [CrossRef]
- Tal, B.; Robeson, D.J.; Burke, B.A.; Aasen, A.J. Phytotoxins from Alternaria helianti: Radicinina and the structures of deoxyradicinol and radianthin. Phytochemistry 1985, 24, 729–731. [Google Scholar] [CrossRef]
- Noordeloos, M.E.; De Gruyter, J.; Van Eijl, G.W.; Roeijmans, H.J. Production of dendritic crystals in pure cultures of Phoma and Ascochyta and its value as a taxonomic character relative to morphology, pathology and cultural characteristics. Micol. Res. 1993, 97, 1343–1350. [Google Scholar] [CrossRef]
- Kadam, S.; Poddig, J.; Humphrey, P.; Karwowski, J.; Jackson, M.; Tennent, S.; Fung, T.; Hochlowski, J.; Rasmussen, R.; McAlpine, J. Citrine hydrate and radicinin: Uman rinovirus 3-C protease inhibitors discovered in target-directed microbial screen. J. Antib. 1994, 47, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Ishida, T.; Otsuka, Y.; Hamasaki, T.; Ichinoe, M. Phytotoxins and related metabolites produced by Bipolaris coicis, the pathogen of job’s tears. Phytochemistry 1997, 45, 41–45. [Google Scholar] [CrossRef]
- Pryor, B.M.; Gilbertson, R.L. Relationships and taxonomic status of Alternaria radicina, A. Carotincultae, and A. petroselini based upon morphological, biochemical, and molecular characteristics. Mycologia 2002, 94, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Freda, F.; Sangermano, F.; Calabrò, V.; Cimmino, A.; Cristofaro, M.; Meyer, S.; Evidente, A. Radicinin, a fungal phytotoxin as a target-specific bioherbicide for invasive buffelgrass (Cenchrus ciliaris) control. Molecules 2019, 24, 1086. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Ishikura, T.; Ozaki, A. For Sankaru-Ocean Co. Ltd. Japanese Patent NO. 420 11 997 B, 7 July 1967. [Google Scholar]
- Aldrich, T.J.; Rolshausen, P.E.; Roper, M.C.; Reader, J.M.; Steinhaus, M.J.; Rapicavoli, J.; Vosburg, D.A.; Maloney, K.N. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce’s Disease of grapevine. Phytochemistry 2015, 116, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Meyer, S.; Clement, S.; Cimmino, A.; Evidente, A. Effect of cultural conditions on the production of radicinin, a specific fungal phytotoxin for buffelgrass (Cenchrus ciliaris) biocontrol, by different Cochlioboulus australiensis strains. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
- Evidente, A.; Andolfi, A.; Cimmino, A. Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 2011, 23, 674–693. [Google Scholar] [CrossRef]
- Evidente, A.; Cimmino, A.; Andolfi, A. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides. Chirality 2013, 25, 59–78. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Nakanishi, K. Exciton chirality method and its application to configurational and conformational studies of natural products. Acc. Chem. Res. 1972, 5, 257–263. [Google Scholar] [CrossRef]
- Suzuki, M.; Sakuno, E.; Ishihara, A.; Tamura, J.I.; Nakajima, H. Conversions of deoxyradicinin to radicinin and of radicinin to 3-epi-radicinin in the phytopathogenic fungus Bipolaris coicis. Phytochemistry 2012, 75, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Application of Mosher’s method for absolute configuration assignment to bioactive plants and fungi metabolites. J. Pharm. Biomed. Anal. 2017, 144, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, H.; Canning, A.-M. Novel radicinol derivatives from long-term cultures of Alternaria chrysanthemi. J. Nat. Prod. 1999, 62, 1568–1569. [Google Scholar] [CrossRef] [PubMed]
- Autschbach, J. Ab initio electronic circular dichroism and optical rotatory dispersion: From organic molecules to transition metal complexes. In Comprehensive chiroptical spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules; Berova, N., Polavarapu, P.L., Nakanishi, K., Woody, R.W., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; Volume 1, Chapter 21; pp. 593–642. [Google Scholar]
- He, Y.; Wang, B.; Dukor, R.; Nafie, L.A. Determination of Absolute Configuration of Chiral Molecules Using Vibrational Optical Activity: A Review. Appl. Spectrosc. 2011, 65, 699–723. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, P.L.; Donahue, E.A.; Shanmugam, G.; Scalmani, G.; Hawkins, E.K.; Rizzo, C.; Ibnusaud, I.; Thomas, G.; Habel, D.; Sebastian, D. A single chiroptical spectroscopic method may not be able to establish the absolute configurations of diastereomers: Dimethylesters of hibiscus and garcinia acids. J. Phys. Chem. A 2011, 115, 5665–5673. [Google Scholar] [CrossRef] [PubMed]
- Abbate, S.; Burgi, L.F.; Castiglioni, E.; Lebon, F.; Longhi, G.; Toscano, E.; Caccamese, S. Assessment of configurational and conformational properties of Naringenin by Vibrational Circular Dichroism. Chirality 2009, 21, 436–441. [Google Scholar] [CrossRef]
- Mazzeo, G.; Cimmino, A.; Masi, M.; Longhi, G.; Maddau, L.; Memo, M.; Evidente, A.; Abbate, S. Importance and difficulties in the use of chiroptical methods to assign the absolute configuration of natural pèroducts: the case of phytotoxic pyrones and furanones produced by Diplodia corticola. J. Nat. Prod. 2017, 80, 2406–2415. [Google Scholar] [CrossRef]
- Superchi, S.; Scafato, P.; Górecki, M.; Pescitelli, G. Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: Basics and applications to fungal metabolites. Curr. Med. Chem. 2018, 25, 287–320. [Google Scholar] [CrossRef]
- Mazzeo, G.; Santoro, E.; Andolfi, A.; Cimmino, A.; Troselj, P.; Petrovic, A.G.; Superchi, S.; Evidente, A.; Berova, N. Absolute configurations of fungal and plant metabolites by chiroptical methods. ORD, ECD, and VCD studies on phyllostin, scytolide, and oxysporone. J. Nat. Prod. 2013, 76, 588–599. [Google Scholar] [CrossRef]
- Santoro, E.; Mazzeo, G.; Petrovic, A.G.; Cimmino, A.; Koshoubu, J.; Evidente, A.; Berova, N.; Superchi, S. Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies. Phytochemistry 2015, 116, 359–366. [Google Scholar] [CrossRef]
- Evidente, M.; Cimmino, A.; Zonno, C.; Masi, M.; Berestetskiy, A.; Santoro, E.; Superchi, S.; Vurro, M.; Evidente, A. Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry 2015, 117, 482–488. [Google Scholar] [CrossRef]
- Santoro, S.; Superchi, S.; Messina, F.; Santoro, E.; Rosati, O.; Santi, C.; Marcotullio, M.C. Agarsenone, a cadinane sesquiterpenoid from Commiphora erythraea. J. Nat. Prod. 2013, 76, 1254–1259. [Google Scholar] [CrossRef]
- Evidente, M.; Santoro, E.; Petrovic, A.G.; Cimmino, A.; Koshoubu, J.; Evidente, A.; Berova, N.; Superchi, S. Absolute configurations of phytotoxic inuloxins B and C based on experimental and computational analysis of chiroptical properties. Phytochemistry 2016, 130, 328–334. [Google Scholar] [CrossRef]
- Vergura, S.; Santoro, E.; Masi, M.; Evidente, A.; Scafato, P.; Superchi, S.; Mazzeo, G.; Longhi, G.; Abbate, S. Absolute configuration assignment to anticancer Amaryllidaceae alkaloid jonquailine. Fitoterapia 2018, 129, 78–84. [Google Scholar] [CrossRef]
- Lightner, D.A.; Gurst, J.E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy; Wiley-VCH: New York, NY, USA, 2000; Volume 23. [Google Scholar]
- Moffit, W.; Moscowitz, A. Optical Activity in Absorbing Media. J. Chem. Phys. 1959, 30, 648–660. [Google Scholar] [CrossRef]
- Polavarapu, P.L.; Petrovic, A.G.; Zhang, P. Kramers–Kronig transformation of experimental electronic circular dichroism: Application to the analysis of optical rotatory dispersion in dimethyl-L.-tartrate. Chirality 2006, 18, 723–732. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Monaco, G.; Aquino, F.; Zanasi, R.; Herrebout, W.; Bultinck, P.; Massa, A. Model-averaging of ab initio spectra for the absolute configuration assignment via vibrational circular dichroism. Phys. Chem. Chem. Phys. 2017, 19, 28028–28036. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A. 02; Gaussian, Inc.: Wallingford, Connecticut, CT, USA, 2009. [Google Scholar]
Sample Availability: Samples of the compounds 1–5 are available from the authors. |
[α] Radicinin (1) (CHCl3) | [α] Cochliotoxin (2) (CHCl3) | ||||
(nm) | Calc. | Exp. | (9R,10S) calc. | (9S,10R) calc. | Exp. |
589 | −206 | −159 | +128 | −366 | −131 |
546 | −259 | −231 | +171 | −459 | −168 |
435 | −605 | −556 | +504 | −1010 | −405 |
405 | −885 | −936 | +789 | −1371 | −595 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, E.; Mazzeo, G.; Marsico, G.; Masi, M.; Longhi, G.; Superchi, S.; Evidente, A.; Abbate, S. Assignment Through Chiroptical Methods of The Absolute Configuration of Fungal Dihydropyranpyran-4-5-Diones Phytotoxins, Potential Herbicides for Buffelgrass (Cenchrus ciliaris) Biocontrol. Molecules 2019, 24, 3022. https://doi.org/10.3390/molecules24173022
Santoro E, Mazzeo G, Marsico G, Masi M, Longhi G, Superchi S, Evidente A, Abbate S. Assignment Through Chiroptical Methods of The Absolute Configuration of Fungal Dihydropyranpyran-4-5-Diones Phytotoxins, Potential Herbicides for Buffelgrass (Cenchrus ciliaris) Biocontrol. Molecules. 2019; 24(17):3022. https://doi.org/10.3390/molecules24173022
Chicago/Turabian StyleSantoro, Ernesto, Giuseppe Mazzeo, Giulia Marsico, Marco Masi, Giovanna Longhi, Stefano Superchi, Antonio Evidente, and Sergio Abbate. 2019. "Assignment Through Chiroptical Methods of The Absolute Configuration of Fungal Dihydropyranpyran-4-5-Diones Phytotoxins, Potential Herbicides for Buffelgrass (Cenchrus ciliaris) Biocontrol" Molecules 24, no. 17: 3022. https://doi.org/10.3390/molecules24173022
APA StyleSantoro, E., Mazzeo, G., Marsico, G., Masi, M., Longhi, G., Superchi, S., Evidente, A., & Abbate, S. (2019). Assignment Through Chiroptical Methods of The Absolute Configuration of Fungal Dihydropyranpyran-4-5-Diones Phytotoxins, Potential Herbicides for Buffelgrass (Cenchrus ciliaris) Biocontrol. Molecules, 24(17), 3022. https://doi.org/10.3390/molecules24173022