Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace–Gas Chromatography–Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. HS–GC–IMS Topographic Plots of FKs, VS-ADKs, and AS-ADKs
2.2. Differences in the Characteristic Volatile Fingerprints of FKs, VS-ADKs, and AS-ADKs
2.3. Identification of Volatile Substances in FKs, VS-ADKs, and AS-ADKs
2.4. Distribution and Comparison of Five Types of Volatile Constituents in Different Kumquats
2.5. Distinctive Features Analysis Based on PCA
2.6. Clustering Analysis Based on the Heat Map
3. Material and Methods
3.1. Preparation of Materials and Candied Kumquat Fruits
3.2. Apparatuses
3.3. HS-GC-IMSAnalysis Methods
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FKs Fresh | kumquats |
VS-ADKs | Vacuum osmosis with sugar and then hot-air drying kumquats |
AS-ADKs | Atmospheric pressure osmosis with sugar and then hot-air drying kumquats |
PCA | Principal component analysis |
HS–GC–IMS | Headspace gas chromatography–ion mobility spectrometry |
VOCs | Volatile organic compounds |
CAS | Chemical Abstracts Service |
RI | Retention index |
PCs | Principal components |
References
- Zhu, L.; Chen, G.Q.; Zhao, X.L.; Deng, C.L.; Hyde, K.D.; Li, H.Y. Fusarium spp. are responsible for shoot canker of kumquat in China. J. Phytopathol. 2013, 161, 59–62. [Google Scholar] [CrossRef]
- Wang, Y.W.; Zeng, W.C.; Xu, P.Y.; Lan, Y.J.; Zhu, R.X.; Zhong, K.; Huang, Y.N.; Gao, H. Chemical composition and antimicrobial activity of the essential oil of kumquat (Fortunella crassifolia Swingle) peel. Int. J. Mol. Sci. 2012, 13, 3382–3393. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.N.; Ho, C.T. Phenolic compounds and biological activities of small–size citrus: Kumquat and calamondin. J. Food Drug Anal. 2017, 25, 162–175. [Google Scholar] [CrossRef]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Kumquat (Fortunella japonica Swingle) juice: Flavonoid distribution and antioxidant properties. Food Res. Int. 2011, 44, 2190–2197. [Google Scholar] [CrossRef]
- Chiu, N.C.; Chang, K.S. The Illustrated Medicinal Plants of Taiwan; SMC Publishing Ltd.: Taipei, Taiwan, 1998. [Google Scholar]
- Zeuthen, P.; Sorensen, L.B. Food Preservation Techniques; Woodhead Publishing Limited and CRC Press LLC, 2003. Available online: https://books.google.com.hk/books?hl=zh-CN&lr=&id=PPGiAgAAQBAJ&oi=fnd&pg=PP1&dq=Food+preservation+techniques:&ots=dc7CPBQefc&sig=3u-n1dmFDm_kanCRmllh6o27xig&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=Food%20preservation%20techniques%3A&f=false (accessed on 21 August 2019).
- Deng, Y.; Zhao, Y. Effects of pulsed–vacuum and ultrasound on the osmodehydration kinetics and microstructure of apples (Fuji). J. Food Eng. 2008, 85, 84–93. [Google Scholar] [CrossRef]
- Corrêa, J.L.G.; Pereira, L.M.; Vieira, G.S.; Hubinger, M.D. Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. J. Food Eng. 2010, 96, 498–504. [Google Scholar] [CrossRef]
- Cohen, G.; Rudnik, D.; Laloush, M.; Yakir, D.; Karpas, Z. A novel method for determination of histamine in tuna fish by ion mobility spectrometry. Food Anal. Meth. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- Siegmund, B. 7-Biogenesis of aroma compounds: Flavor formation in fruits and vegetables. Flavour Development Analysis and Perception in Food and Beverages; Woodhead Publishing; pp. 127–149. Available online: https://www.sciencedirect.com/science/article/pii/B9781782421030000072 (accessed on 21 August 2019).
- Rodríguez, L.; SydAli, N.; Lamadrid, M.C.; Artiaga, L.N.; Lipan, L.; Ángel, A.; Carbonell-Barrachina, C.; Esther-Sendra, E. Chapter 18-Flavours and Aromas. Postharvest Physiology and Biochemistry of Fruits and Vegetables; Woodhead Publishing; pp. 385–404. Available online: https://www.elsevier.com/books/postharvest-physiology-and-biochemistry-of-fruits-and-vegetables/yahia/978-0-12-813278-4 (accessed on 21 August 2019).
- Choi, H.S. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J. Agric. Food Chem. 2005, 53, 1642–1647. [Google Scholar] [CrossRef]
- Sicari, V.; Poiana, M. Comparison of the volatile component of the essential oil of kumquat (Fortunella margarita swingle) extracted by supercritical carbon dioxide, hydrodistillation and conventional solvent extraction. J. Essent. Oil Bear. Plants 2017, 20, 87–94. [Google Scholar] [CrossRef]
- Quijano, C.E.; Pino, J.A. Volatile compounds of round kumquat (Fortunella japonica Swingle) peel oil from Colombia. J. Essent. Oil Res. 2009, 21, 483–485. [Google Scholar] [CrossRef]
- Guney, M.; Oz, A.T.; Kafkas, E. Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques. J. Sci. Food Agric. 2015, 95, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Liu, B.H.; Jiang, D.; Zhu, S.P.; Shen, W.X.; Yu, X.; Xue, Y.; Liu, M.Y.; Feng, J.Y.; Zhao, X.C. The accumulation and composition of essential oil in kumquat peel. Sci. Hortic. 2019, 252, 121–129. [Google Scholar] [CrossRef]
- Peng, L.W.; Sheu, M.J.; Lin, L.Y.; Wu, C.T.; Chiang, H.M.; Lin, W.H.; Lee, M.C.; Chen, H.C. Effect of heat treatments on the essential oils of kumquat (Fortunella margarita Swingle). Food Chem. 2013, 136, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Tranchida, P.Q.; Bonaccorsi, I.; Dugo, P.; Mondello, L.; Dugo, G. Analysis of Citrus essential oils: State of the art and future perspectives. A review. Flavour Fragr. J. 2012, 27, 98–123. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Arce, L.; Gallegos, J.; Garrido, R.; Medina, L.M.; Sielemann, S.; Wortelmann, T. Ion mobility spectrometry a versatile analytical tool for metabolomics application in food science. Curr. Metab. 2014, 2, 264–271. [Google Scholar] [CrossRef]
- Contreras, M.M.; Arroyo-Manzanares, N.; Arce, C.; Arce, L. HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control 2019, 98, 82–93. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Arce, L.; Guamán, A.V.; Pardo, A.; Marco, S.; Valcárce, M. Direct coupling of a gas–liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools. Talanta 2011, 84, 471–479. [Google Scholar] [CrossRef]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696. [Google Scholar] [CrossRef]
- Martín-Gómez, A.; Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; Arce, L. Use of a non–destructive sampling method for characterization of Iberian cured ham breed and feeding regime using GC-IMS. Meat Sci. 2019, 152, 146–154. [Google Scholar] [CrossRef]
- Wang, X.R.; Yang, S.P.; He, J.N.; Chen, L.Z.; Zhang, J.Z.; Jin, Y.; Zhou, J.H.; Zhang, Y.X. A green triple–locked strategy based on volatile–compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography–ion mobility spectrometry. Food Res. Int. 2019, 119, 960–967. [Google Scholar] [CrossRef]
- Gallegos, J.; Garrido-Delgado, R.; Arce, L.; Luis, M.; Medina, L.M. Volatile metabolites of goat cheeses determined by ion mobility spectrometry. Potential applications in quality control. Food Anal. Meth. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Li, M.Q.; Yang, R.W.; Zhang, H.; Wang, S.L.; Chen, D.; Lin, S.Y. Development of a flavor fingerprint by HS–GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.F.; Ju, H.P.; Wu, C.; Lin, S.Y. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS–GC–IMS and HS–SPME–GC–MS. J. Chromatogr. B 2018, 1099, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Qu, H.Y.; Xie, M.Z.; Zeng, G.; Huang, H.Y.; Ren, F.; Chen, N.H. Direct authentication of three Chinese material medica species of the Lilii Bulbus family in terms of volatile components by headspace–gas chromatography–ion mobility spectrometry. Anal. Methods 2019, 11, 530–536. [Google Scholar] [CrossRef]
- Pu, D.D.; Zhang, H.Y.; Zhang, Y.Y.; Sun, B.G.; Ren, F.Z.; Chen, H.T.; He, J.N. Characterization of the aroma release and perception of white bread during oral processing by gas chromatography–ion mobility spectrometry and temporal dominance of sensations analysis. Food Res. Int. 2019, 123, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Sebzalli, Y.M.; Wang, X.Z. Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 2001, 14, 607–616. [Google Scholar] [CrossRef]
- Yang, L.; Nuerbiye, A.; Cheng, P.; Wang, J.H.; Li, H. Analysis of floral volatile components and antioxidant activity of different varieties of chrysanthemum morifolium. Molecules 2017, 22, 1790. [Google Scholar] [CrossRef] [PubMed]
- Comandini, P.; Blanda, G.; Paz, H.M.; Fragoso, A.V.; Toschi, T.G. Impregnation techniques for aroma enrichment of apple sticks: A preliminary study. Food Bioprocess Technol. 2010, 3, 861–866. [Google Scholar] [CrossRef]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of hot-air drying on volatile compounds of Flammulina velutipes detected by HS–SPME–GC–MS and electronic nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chem. 2015, 171, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.E.; Fairbanks, A.J.; Golding, M.; Andrewes, P.; Gerrard, J.A. The role of the Maillard reaction in the formation of flavor compounds in dairy products-Not only a deleterious reaction but also a rich source of flavor compounds. Food Funct. 2012, 3, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.D.; Chiralt, A.; Escriche, I. Development of volatile fraction of fresh cut osmotically treated mango during cold storage. Food Chem. 2012, 130, 921–927. [Google Scholar] [CrossRef]
- Risch, S.J.; Ho, C.T. Flavor chemistry. In Industrial and Academic Research; American Chemical Society: Washington, DC, USA, Chapter 5; 2000. [Google Scholar]
- Rizzolo, A.; Gerli, F.; Prinzivalli, C.; Burattib, S.; Torreggiani, D. Headspace volatile compounds during osmotic dehydration of strawberries (cv Camarosa): Influence of osmotic solution composition and processing time. LWT–Food Sci. Technol. 2007, 40, 529–535. [Google Scholar] [CrossRef]
- Ames, J. Control of the Maillard reaction in food systems. Trends Food Sci. Technol. 1990, 1, 150–154. [Google Scholar] [CrossRef]
- Rodríguez-Maecker, R.; Vyhmeister, E.; Meisen, S.; Martinez, A.R.; Kuklya, A.; Telgheder, U. Identification of terpenes and essential oils by means of static headspace gas chromatography–ion mobility spectrometry. Anal. Bioanal. Chem. 2017, 409, 6595–6603. [Google Scholar] [CrossRef] [PubMed]
- Lantsuzskaya, E.V.; Krisilov, A.V.; Levina, A.M. Structure of the cluster ions of ketones in the gas phase according to ion mobility spectrometry and ab initio calculations. Russ. J. Phys. Chem. 2015, 89, 1838–1842. [Google Scholar] [CrossRef]
- Javed, H.U.; Wang, D.; Wu, G.F.; Kaleeme, Q.M.; Duan, C.Q.; Shi, Y. Post–storage changes of volatile compounds in air– and sun–dried raisins with different packaging materials using HS–SPME with GC/MS. Food Res. Int. 2019, 119, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Castelló, M.L.; Igual, M.; Fito, P.J.; Chiralt, A. Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). J. Food Eng. 2009, 91, 1–9. [Google Scholar]
- Talens, P.; Escriche, I.; Martínez-Navarrete, N.; Chiralt, A. Influence of osmotic dehydration and freezing on the volatile profile of kiwi fruit. Food Res. Int. 2003, 36, 635–642. [Google Scholar] [CrossRef]
- Schwab, W.; Schreier, P. Enzymic formation of flavour volatiles from lipids. In Lipid Biotechnology; CRC Press: New York, NY, USA, 2002; pp. 295–320. [Google Scholar]
- Reineccius, G. Flavor Chemistry and Technology, 2nd ed.; Taylor and Francis Routledge: Boca Raton, FL, USA, 2006; Chapters 4, 5, 9. [Google Scholar]
- Vázquez-Araújo, L.; Enguix, L.; Verdú, A.; García-García, E.; Carbonell-Barrachina, A.A. Investigation of aromatic compounds in toasted almonds used for the manufacture of turrón. Eur. Food Res. Technol. 2008, 227, 243–254. [Google Scholar] [CrossRef]
- Pripis-Nicolau, L.; Bertrand, A.; Maujean, A. Formation of flavour components by the reaction of amino acid and carbonyl compounds in mild conditions. J. Agric. Food Chem. 2000, 48, 3761–3766. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Koutsidis, G.; Zielinski, H. Determination of antioxidant capacity, phenolics and volatile Maillard reaction products in Rye–Buckwheat biscuits supplemented with 3β-d-Rutinoside. Molecules 2019, 24, 982. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.; Yang, W.J.; Ma, N.; Fang, Y.; Zhao, L.Y.; An, X.X.; Xin, Z.H.; Hu, Q.H. Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose. LWT–Food Sci. Technol. 2016, 72, 343–350. [Google Scholar] [CrossRef]
- Vejaphan, W.; Hsieh, T.C. Volatile flavor components from boiled crayfish (Procambarus clarkii) tail meat. J. Food. Sci. 1988, 53, 1666–1670. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Pistachio oil (Pistacia vera L.cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC–MS olfactometry and phenolic profile by LC–ESI–MS/MS. Food Chem. 2018, 240, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Zhang, M.; Bhandari, B.; Yang, P.Q. Intelligent detection of flavor changes in ginger during microwave vacuum drying based on LF–NMR. Food Res. Int. 2019, 119, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile profiles of emissions from different activities analyzed using canister samplers and gas chromatography–mass spectrometry (GC/MS) analysis: A case study. Int. J. Environ. Res. Public Health 2017, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Amorello, D.; Orecchio, S.; Pacea, A.; Barreca, S. Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling. Nat. Prod. Res. 2016, 30, 2107–2110. [Google Scholar] [CrossRef]
- Han, D.; Mi, S.; Zhang, C.H.; Li, J.; Song, H.L.; Fauconnier, M.L.; Tyteca, E. Characterization and discrimination of Chinese marinated pork hocks by volatile compound profiling using solid phase microextraction gas chromatography–mass spectrometry/olfactometry, electronic nose and chemometrics. Molecules 2019, 24, 1385. [Google Scholar] [CrossRef]
- Li, J.; Di, T.J.; Bai, J.H. Distribution of volatile compounds in different fruit structures in four tomato cultivars. Molecules 2019, 24, 2594. [Google Scholar] [CrossRef]
- Chen, W.J.; Liu, Y.Y.; Jiao, B.N. Dissipation behavior of five organophosphorus pesticides in kumquat sample during honeyed kumquat candied fruit processing. Food Control 2016, 66, 87–92. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
No. | Compound | CAS# | Formula | MW a | RI b | Rt c [s] | Dt d [RIPrel] | Comment |
---|---|---|---|---|---|---|---|---|
1 | α-Pinene | C80-56-8 | C10H16 | 136.2 | 932.7 | 401.54 | 1.215 | Monomer |
2 | α-Pinene | C80-56-8 | C10H16 | 136.2 | 931.5 | 399.841 | 1.3022 | Dimer |
3 | α-Pinene | C80-56-8 | C10H16 | 136.2 | 932.7 | 401.54 | 1.6673 | Polymer |
4 | α-Pinene | C80-56-8 | C10H16 | 136.2 | 931.0 | 398.992 | 1.7309 | Polymer |
5 | Hexanal | C66-25-1 | C6H12O | 100.2 | 795.9 | 252.139 | 1.2545 | Monomer |
6 | Hexanal | C66-25-1 | C6H12O | 100.2 | 794.2 | 250.791 | 1.5622 | Dimer |
7 | Heptanal | C111-71-7 | C7H14O | 114.2 | 899.0 | 354.588 | 1.3346 | |
8 | 2-Hexen-1-ol | C2305-21-7 | C6H12O | 100.2 | 850.5 | 301.544 | 1.1793 | Monomer |
9 | 2-Hexen-1-ol | C2305-21-7 | C6H12O | 100.2 | 849.3 | 300.288 | 1.5183 | Dimer |
10 | Pentanal | C110-62-3 | C5H10O | 86.1 | 702.6 | 184.223 | 1.1766 | Monomer |
11 | Pentanal | C110-62-3 | C5H10O | 86.1 | 700.7 | 183.013 | 1.4235 | Dimer |
12 | Ethyl acetate | C141-78-6 | C4H8O2 | 88.1 | 626.4 | 147.773 | 1.0936 | Monomer |
13 | Ethyl acetate | C141-78-6 | C4H8O2 | 88.1 | 625.2 | 147.254 | 1.3345 | Dimer |
14 | 3-Pentanone | C96-22-0 | C5H10O | 86.1 | 702.1 | 183.922 | 1.1085 | Monomer |
15 | 3-Pentanone | C96-22-0 | C5H10O | 86.1 | 702.1 | 183.922 | 1.3564 | Dimer |
16 | Ethanol | C64-17-5 | C2H6O | 46.1 | 512.1 | 107.227 | 1.0469 | Monomer |
17 | Ethanol | C64-17-5 | C2H6O | 46.1 | 518.2 | 109.088 | 1.1313 | Dimer |
18 | Dimethyl ketone | C67-64-1 | C3H6O | 58.1 | 533.4 | 113.842 | 1.111 | |
19 | Benzaldehyde | C100-52-7 | C7H6O | 106.1 | 957.2 | 439.544 | 1.1465 | Monomer |
20 | Benzaldehyde | C100-52-7 | C7H6O | 106.1 | 955.0 | 435.993 | 1.4705 | Dimer |
21 | α-Terpineol | C98-55-5 | C10H18O | 154.3 | 1166.6 | 864.748 | 1.2195 | |
22 | n-Nonanal | C124-19-6 | C9H18O | 142.2 | 1103.6 | 729.481 | 1.484 | |
23 | 2-Butanone | C78-93-3 | C4H8O | 72.1 | 612.5 | 142.108 | 1.0562 | Monomer |
24 | 2-Butanone | C78-93-3 | C4H8O | 72.1 | 610.6 | 141.347 | 1.2482 | Dimer |
25 | 1-Pentanol | C71-41-0 | C5H12O | 88.1 | 766.2 | 228.27 | 1.2504 | |
26 | Butyl acetate | C123-86-4 | C6H12O2 | 116.2 | 811.9 | 265.683 | 1.2336 | |
27 | Furfurol | C98-01-1 | C5H4O2 | 96.1 | 829.7 | 281.606 | 1.0831 | Monomer |
28 | Furfurol | C98-01-1 | C5H4O2 | 96.1 | 828.6 | 280.624 | 1.3301 | Dimer |
29 | 3-Methylbutyl acetate | C123-92-2 | C7H14O2 | 130.2 | 879.2 | 331.239 | 1.2998 | Monomer |
30 | 3-Methylbutyl acetate | C123-92-2 | C7H14O2 | 130.2 | 879.0 | 330.987 | 1.741 | Dimer |
31 | (Z)-3-hexen-1-ol | C928-96-1 | C6H12O | 100.2 | 855.7 | 306.615 | 1.228 | Monomer |
32 | (Z)-3-hexen-1-ol | C928-96-1 | C6H12O | 100.2 | 855.5 | 306.47 | 1.5051 | Dimer |
33 | 1-Hexanol | C111-27-3 | C6H14O | 102.2 | 870.0 | 321.335 | 1.3242 | |
34 | 3-Methylbutanal | C590-86-3 | C5H10O | 86.1 | 666.2 | 165.191 | 1.1711 | Monomer |
35 | 3-Methylbutanal | C590-86-3 | C5H10O | 86.1 | 665.5 | 164.881 | 1.403 | Dimer |
36 | Isoamyl hexanoate | C2198-61-0 | C11H22O2 | 186.3 | 1217.2 | 991.484 | 1.5307 | Monomer |
37 | Isoamyl hexanoate | C2198-61-0 | C11H22O2 | 186.3 | 1217.5 | 992.272 | 2.1482 | Dimer |
38 | Limonene | C138-86-3 | C10H16 | 136.2 | 1029.4 | 568.854 | 1.2988 | Dimer |
39 | Limonene | C138-86-3 | C10H16 | 136.2 | 1028.0 | 566.046 | 1.6609 | Polymer |
40 | Limonene | C138-86-3 | C10H16 | 136.2 | 1027.6 | 565.344 | 1.7238 | Polymer |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Wang, R.; Guo, J.; Ge, K.; Li, G.; Fu, F.; Ding, S.; Shan, Y. Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace–Gas Chromatography–Ion Mobility Spectrometry. Molecules 2019, 24, 3053. https://doi.org/10.3390/molecules24173053
Hu X, Wang R, Guo J, Ge K, Li G, Fu F, Ding S, Shan Y. Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace–Gas Chromatography–Ion Mobility Spectrometry. Molecules. 2019; 24(17):3053. https://doi.org/10.3390/molecules24173053
Chicago/Turabian StyleHu, Xiao, Rongrong Wang, Jiajing Guo, Keda Ge, Gaoyang Li, Fuhua Fu, Shenghua Ding, and Yang Shan. 2019. "Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace–Gas Chromatography–Ion Mobility Spectrometry" Molecules 24, no. 17: 3053. https://doi.org/10.3390/molecules24173053
APA StyleHu, X., Wang, R., Guo, J., Ge, K., Li, G., Fu, F., Ding, S., & Shan, Y. (2019). Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace–Gas Chromatography–Ion Mobility Spectrometry. Molecules, 24(17), 3053. https://doi.org/10.3390/molecules24173053