Influence of Olive Extracts on the Expression of Genes Involved in Lipid Metabolism in Medaka Fish
Abstract
:1. Introduction
2. Results
Expression of Genes Involved in Lipolysis
3. Discussion
3.1. Summary
3.2. Strengths and Limitations
3.3. Comparison with the Literature
3.4. Applicability and Future Lines of Research
4. Material and Methods
4.1. Subjects
4.2. Procedure
4.3. Validation of Primers
4.4. Calculation of Gene Expression
4.5. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the Predimed study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Beltran, D.; Gil-Guillen, V.F.; Redon, J.; Martin-Moreno, J.M.; Pallares-Carratala, V.; Navarro-Perez, J.; Valls-Roca, F.; Sanchis-Domenech, C.; Fernandez-Gimenez, A.; Perez-Navarro, A.; et al. Lipid profile, cardiovascular disease and mortality in a Mediterranean high-risk population: The Escarval-Risk study. PLoS ONE 2017, 12, e0186196. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Ye, X.; Zhang, R.; Long, J.; Ren, W.; Ding, S.; Liao, D.; Jin, X.; Wu, H.; Xu, S.; et al. Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway. PLoS ONE 2013, 8, e53796. [Google Scholar] [CrossRef]
- Sears, B.; Ricordi, C. Role of fatty acids and polyphenols in inflammatory gene transcription and their impact on obesity, metabolic syndrome and diabetes. Eur. Rev. Med Pharmacol. Sci. 2012, 16, 1137–1154. [Google Scholar] [PubMed]
- Panickar, K.S. Effects of dietary polyphenols on neuroregulatory factors and pathways that mediate food intake and energy regulation in obesity. Mol. Nutr. Food Res. 2013, 57, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Baret, P.; Septembre-Malaterre, A.; Rigoulet, M.; D’hellencourt, C.L.; Priault, M.; Gonthier, M.P.; Devin, A. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. Int. J. Biochem. Cell Biol. 2013, 45, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Veciana-Galindo, C.; Cortés-Castell, E.; Torró-Montell, L.; Palazón-Bru, A.; Sirvent-Segura, E. Anti-adipogenic activity of an olive seed extract in mouse fibroblasts. Nutr. Hosp. 2015, 31, 2747–2751. [Google Scholar] [PubMed]
- Masahito, P.; Aoki, K.; Egami, N.; Ishikawa, T.; Sugano, J. Life-span studies on spontaneous tumor development in the medaka (Orzyzias latipes). Jpn. J. Cancer Res. 1989, 80, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, M.; Naruse, K.; Sasaki, S.; Nakatani, Y.; Qu, W.; Ahsan, B.; Yamada, T.; Nagayasu, Y.; Doi, K.; Kasai, Y.; et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 2007, 447, 714–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schartl, M.; Kneitz, S.; Wilde, B.; Wagner, T.; Henkel, C.V.; Spaink, H.P.; Meierjohann, S. Conserved expression signatures between medaka and human pigment cell tumors. PLoS ONE 2012, 7, e37880. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, M.A. Lipid dynamics in fish: Aspects of absorption, tansportation, deposition and mobilization. Comp. Biochem. Physiol. 1988, 90, 679–690. [Google Scholar] [CrossRef]
- Moseti, D.; Regassa, A.; Kim, W.K. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Issemann, I.; Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990, 347, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Sprecher, D.L. Lipids, lipoproteins, and peroxisome proliferator activated receptor-delta. Am. J. Cardiol. 2007, 100, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Jideonwo, V.; Ahn, M.; Surendran, S.; Tagliabracci, V.S.; Hou, Y.; Gamble, A.; Kerner, J.; Irimia-Dominguez, J.M.; Puchowicz, M.; et al. Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J. Biol. Chem. 2014, 289, 5510–5517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ji, R.; Sun, H.; Peng, J.; Ma, X.; Wang, C.; Fu, Y.; Bao, L.; Jin, Y. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Free Radic. Res. 2018, 52, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Yuk, T.; Kim, Y.; Yang, J.; Sung, J.; Jeong, H.S.; Lee, J. Nobiletin Inhibits Hepatic Lipogenesis via Activation of AMP-Activat ed Protein Kinase. Evid. Based Complementary Altern. Med. 2018, 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Guo, Z.; Li, D.; Li, H.; He, J.; Wen, D.; Luo, B. Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR-γ and Bcl-2 in model mice. Mol. Med. Rep. 2018, 17, 1261–1268. [Google Scholar] [CrossRef]
- Kabirifar, R.; Ghoreshi, Z.; Rezaifar, A.; Binesh, F.; Bamdad, K.; Moradi, A. Curcumin, quercetin and atorvastatin protected against the hepatic fibrosis by activating AMP-activated protein kinase. J. Funct. Foods 2018, 40, 341–348. [Google Scholar] [CrossRef]
- Ren, K.; Jiang, T.; Zhao, G.J. Quercetin induces the selective uptake of HDL-cholesterol via promoting SR-BI expression and the activation of the PPARγ/LXRα pathway. Food Funct 2018, 9, 624–635. [Google Scholar] [CrossRef]
- Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct. 2017, 8, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tian, M.; Yang, R.; Jing, Y.; Chen, W.; Wang, J.; Zheng, X.; Wang, F. 6-Gingerol Ameliorates Behavioral Changes and Atherosclerotic Lesions in ApoE-/- Mice Exposed to Chronic Mild Stress. Cardiovasc. Toxicol. 2018, 18, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, Y.; Ma, Y.; Wen, D. Hydroxytyrosol ameliorates insulin resistance bymodulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice. J. Nutr. Biochem. 2018, 57, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Hadrich, F.; Sayadi, S. Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARγ and CEBP-α. Lipids Health Dis. 2018, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Crea, R.; Liu, S.; Zhu, H.; Yang, Y.; Pontoniere, P. Validation of neuroprotective action of a commercially available formulation of olive polyphenols in a zebra-fish model vis-a-vis pure hydroxytyrosol. J. Agric. Sci. Technol. 2017, 1, 22–26. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Medium | PPAR⍺ | p-Value | ACO1 | p-Value | CPT1 | p-Value |
---|---|---|---|---|---|---|
Control | 1.10 ± 0.86 | 0.006 | 1.10 ± 0.80 | 0.045 | 1.37 ± 1.38 | 0.011 |
Control OB | 0.28 ± 0.18 | - | 0.67 ± 0.45 | - | 0.66 ± 0.66 | - |
E1 | 0.20 ± 0.14 | 0.447 | 1.55 ± 1.18 | 0.035 | 0.70 ± 0.43 | 0.468 |
E2 | 0.09 ± 0.06 | 0.040 | 0.54 ± 0.68 | 0.174 | 1.24 ± 0.58 | 0.035 |
E3 | 0.11 ± 0.07 | 0.043 | 1.14 ± 1.01 | 0.292 | 0.91 ± 0.57 | 0.104 |
E4 | 0.52 ± 0.39 | 0.274 | 1.21 ± 1.10 | 0.254 | 0.93 ± 0.86 | 0.461 |
E5 | 0.32 ± 0.22 | 0.625 | 0.50 ± 0.20 | 0.290 | 0.97 ± 0.71 | 0.047 |
Medium | FAS | p-Value | ACC1 | p-Value | SREBP1 | p-Value |
---|---|---|---|---|---|---|
Control | 1.44 ± 1.40 | <0.001 | 1.50 ± 1.46 | <0.001 | 1.00 ± 0.03 | 0.083 |
Control OB | 94.70 ± 63.60 | - | 9.40 ± 6.47 | - | 0.75 ± 0.51 | - |
E1 | 32.90 ± 18.97 | 0.008 | 2.68 ± 2.77 | 0.003 | 1.58 ± 1.10 | 0.025 |
E2 | 21.26 ± 22.87 | 0.001 | 1.07 ± 1.25 | <0.001 | 0.36 ± 0.20 | 0.061 |
E3 | 7.26 ± 10.37 | <0.001 | 1.18 ± 0.79 | <0.001 | 0.52 ± 0.39 | 0.332 |
E4 | 27.93 ± 21.62 | 0.001 | 6.23 ± 5.96 | 0.207 | 0.61 ± 0.20 | 0.735 |
E5 | 19.95 ± 16.73 | <0.001 | 6.02 ± 4.33 | 0.091 | 0.40 ± 0.20 | 0.104 |
Extract | Total Polyphenols (mg/g Extract) | Total Antioxidants (mmol TPTZ/100 g) * | Oleuropein (% w/w) | Hydroxytyrosol (% w/w) |
---|---|---|---|---|
E1 | 23 | 3 | 1.12 | 0.2 |
E2 | 68 | 8 | 0.5 | 0.03 |
E3 | 7 | 2 | <0.003 (LD) | <0.001 (LD) |
E4 | 116 | 13 | 1.24 | 10.17 |
E5 | 49 | 5 | 1.27 | 1.99 |
Gene | Forward Primer (5′-3′) | Reverse Primer (3′-5′) |
---|---|---|
PPAR⍺ | TCTTGAGTGTCGGGTGTGTG | CGGTAGAGCCCACCATCTT |
ACO1 | GCTCAGCTTTACAGCCTTGG | GGACGATTCCCTAACGATCA |
CPT1 | ATGTCTACCTCCGTGGACGA | CAAGTTTGGCCTCTCCTTTG |
FAS | GACGCTTCAGGAAATGGGTA | GGACAGGAACCGGACTATCA |
ACC1 | GAGTGACGTCCTGCTTGACA | ACCTTTGGTCCACCTCACAG |
SREBP1 | CCCAACCAGATGAGGAGAAA | AGGACTTTTGTGCTGCTCGT |
β-actin | CTGGACTTCGAGCAGGAGAT | CTGGAAGGTGGACAGAGAG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torró-Montell, L.; Cortés-Castell, E.; Sirvent-Segura, E.; Veciana-Galindo, C.; Gil-Guillén, V.; Rizo-Baeza, M. Influence of Olive Extracts on the Expression of Genes Involved in Lipid Metabolism in Medaka Fish. Molecules 2019, 24, 3068. https://doi.org/10.3390/molecules24173068
Torró-Montell L, Cortés-Castell E, Sirvent-Segura E, Veciana-Galindo C, Gil-Guillén V, Rizo-Baeza M. Influence of Olive Extracts on the Expression of Genes Involved in Lipid Metabolism in Medaka Fish. Molecules. 2019; 24(17):3068. https://doi.org/10.3390/molecules24173068
Chicago/Turabian StyleTorró-Montell, Luis, Ernesto Cortés-Castell, Elia Sirvent-Segura, Carmen Veciana-Galindo, Vicente Gil-Guillén, and Mercedes Rizo-Baeza. 2019. "Influence of Olive Extracts on the Expression of Genes Involved in Lipid Metabolism in Medaka Fish" Molecules 24, no. 17: 3068. https://doi.org/10.3390/molecules24173068
APA StyleTorró-Montell, L., Cortés-Castell, E., Sirvent-Segura, E., Veciana-Galindo, C., Gil-Guillén, V., & Rizo-Baeza, M. (2019). Influence of Olive Extracts on the Expression of Genes Involved in Lipid Metabolism in Medaka Fish. Molecules, 24(17), 3068. https://doi.org/10.3390/molecules24173068