A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of HPLC-UV/Vis Method
2.2. Total Phenolic, Flavonoid, Phenolic Acid and l(+)-Ascorbic Acid Contents
2.3. Quantification of Phenolic Compounds
2.4. Antioxidant Activity
2.5. Acetylcholinesterase Inhibitory Activity
2.6. Discrimination of White Mulberry Commercial Samples
2.7. Inter-Correlation Among Analytes and Biological Activity
3. Materials and Methods
3.1. White Mulberry Samples
3.2. Chemicals and Instruments
3.3. Sample Preparation
3.4. Determination of Phytochemical Compounds
3.4.1. Total Phenolic Content
3.4.2. Total Flavonoid Content
3.4.3. Total Phenolic Acid Content
3.4.4. l(+)-Ascorbic Acid Content
3.4.5. HPLC Analysis
3.5. Evaluation of Antioxidant Activity
3.5.1. DPPH Scavenging Activity Assay
3.5.2. FRAP Assay
3.6. Determination of AChE Inhibitory Activity
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thabti, I.; Elfalleh, W.; Tlili, N.; Ziadi, M.; Campos, M.G.; Ferchichi, A. Phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of Morus species. Int. J. Food Prop. 2014, 17, 842–854. [Google Scholar] [CrossRef]
- Jo, S.P.; Kim, J.K.; Lim, Y.H. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 2014, 65, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wang, X.; Jiang, X.; Kong, F.; Wang, S.; Yan, C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J. Ethnopharmacol. 2017, 199, 119–127. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fang, J.; Ruan, Y.; Wang, X.; Sun, Y.; Wu, N.; Zhao, Z.; Chang, Y.; Guo, H.; Huang, L. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem. 2018, 245, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Sun, H.; Cao, Y.; Wang, G.; Meng, Y.; Wang, D.; Hong, Y. Mulberry leaf polysaccharides modulate murine bone-marrow-derived dendritic cell maturation. Hum. Vaccin. Immunother. 2015, 11, 946–950. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Lu, T.; Wang, M.; Zou, X.; Zhang, Y.; Yang, X.; Dong, Y.; Zhou, H. Flavonoids from Morus alba L. leaves: Optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and inhibition of α-amylase activities through analytical hierarchy process. Molecules 2019, 24, 2398. [Google Scholar] [CrossRef] [PubMed]
- Eruygur, N.; Dural, E. Determination of 1-deoxynojirimycin by a developed and validated HPLC-FLD method and assessment of in-vitro antioxidant, α-amylase and α-glucosidase inhibitory activity in mulberry varieties from Turkey. Phytomedicine 2019, 53, 234–242. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wan, Y.; Hao, J.Y.; Hu, R.Z.; Chen, C.; Yao, X.H.; Zhao, W.G.; Liu, Z.Y.; Li, L. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crops Prod. 2018, 122, 298–307. [Google Scholar] [CrossRef]
- Liao, B.Y.; Zhu, D.Y.; Thakur, K.; Li, L.; Zhang, J.G.; Wei, Z.J. Thermal and antioxidant properties of polysaccharides sequentially extracted from mulberry leaves (Morus alba L.). Molecules 2017, 22, 2271. [Google Scholar] [CrossRef]
- Ganzon, J.G.; Chen, L.G.; Wang, C.C. 4-O-caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J. Food Drug Anal. 2018, 26, 985–993. [Google Scholar] [CrossRef]
- Chang, Y.C.; Yang, M.Y.; Chen, S.C.; Wang, C.J. Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis. J. Funct. Foods 2016, 21, 249–262. [Google Scholar] [CrossRef]
- Gundogdu, M.; Muradoglu, F.; Gazioglu-Sensoy, R.I.; Yilmaz, H. Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.F.; Lou, X.; Li, X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidant 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; Memon, N.; Luthria, D.; Bhanger, M.I.; Pitafi, A.A. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol. J. Food Nutr. Sci. 2010, 1, 25–32. [Google Scholar]
- Thabti, I.; Elfalleh, W.; Hannachi, H.; Ferchichi, A.; Campos, M.G. Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC-MS. J. Funct. Foods 2012, 4, 367–374. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Zhang, T.; Wang, X.; Hamann, T.; Kang, J.; Yu, D.-Q.; Chen, R.-Y. A chemical investigation of the leaves of Morus alba L. Molecules 2018, 23, 1018. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Du, X.; Yang, Y.; Cui, X.; Zhang, Z.; Li, Y. Comparative study of chemical composition and active components against α-glucosidase of various medicinal parts of Morus alba L. Biomed. Chromatogr. 2018, 32, e4328. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Tang, G.H.; Lou, L.L.; Li, W.; Zhang, B.; Liu, B.; Yin, S. Prenylated flavonoids as potent phosphodiesterase-4 inhibitors from Morus alba: Isolation, modification, and structure-activity relationship study. Eur. J. Med. Chem. 2018, 144, 758–766. [Google Scholar] [CrossRef]
- Yu, W.T.; Kwon, O.C.; Kim, H.B.; Sung, G.B.; Kim, H.W.; Kim, Y.S. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J. Food Sci. Technol. 2018, 55, 1789–1796. [Google Scholar] [Green Version]
- Atta-Ur-Rahman; Atia-Tul-Wahab; Wahab, A.T.; Nawas, S.A.; Choudhary, M.I. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus. Chem. Pharm. Bull. 2004, 52, 802–806. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, B.; Ahmad, M.; Iqbal, Z.; Nisar, M.; Ahmad, M. In vitro inhibition of acetylcholinesterase, buty-rylcholinesterase and lipoxygenase by crude extract of Myricaria elegans Royle. J. Biol. Sci. 2003, 11, 1046–1049. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol. 2013, 11, 388–413. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kang, Y.M.; Jin, W.Y.; Sung, Y.Y.; Choi, G.; Kim, H.K. Antioxidant activities and polyphenol content of Morus alba leaf extracts collected from varying regions. Biomed. Rep. 2014, 2, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Liao, S.; Shen, W.; Liu, F.; Tang, C.; Chen, C.Y.O.; Sun, Y. Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int. J. Mol. Sci. 2012, 13, 16544–16553. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Bazylak, G.; Gryn, A. Antioxidant activity and total flavonoid content in variable phyto-stem cells extracts obtained by high-pressure homogenization method and assigned for use in biocosmetics. Planta Med. 2015, 81, PW-01. [Google Scholar] [CrossRef]
- Dent, M.; Dragovic-Uzelac, V.; Penic, M.; Brncic, M.; Bosiljkov, I.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.). Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Katsube, T.; Imawaka, N.; Kawano, Y.; Yamazaki, Y.; Shiwaku, K.; Yamane, Y. Antioxidant flavonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity. Food Chem. 2006, 97, 25–31. [Google Scholar] [CrossRef]
- Flaczyk, E.; Kobus-Cisowska, J.; Przeor, M.; Korczak, J.; Remiszewski, M.; Korbas, E.; Buchowski, M. Chemical characterization and antioxidative properties of Polish variety of Morus alba L. leaf aqueous extracts from the laboratory and pilot-scale processes. Agric. Sci. 2013, 4, 141–147. [Google Scholar] [CrossRef]
- Ristivojević, P.M.; Tahir, A.; Malfent, F.; Milojković Opsenica, D.; Rollinger, J.M. High-performance thin-layer chromatography/bioautography and liquid chromatography-mass spectrometry hyphenated with chemometrics for the quality assessment of Morus alba samples. J. Chromatogr. A 2019, 1594, 190–198. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, E. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 2016, 21, 208. [Google Scholar] [CrossRef] [PubMed]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic composition and antioxidant activity of white mulberry (Morus alba L.) fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Tosun, F.; Sener, B. Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential. Z. Naturforsch. C. 2007, 62, 829–832. [Google Scholar] [CrossRef] [PubMed]
- Roseiro, L.B.; Rauter, A.P.; Mourato Serralheirob, M.L. Polyphenols as acetylcholinesterase inhibitors: Structural specificity and impact on human disease. Nutr. Anging 2012, 1, 99–111. [Google Scholar] [Green Version]
- Nwidu, L.L.; Elmorsy, E.; Aprioku, J.S.; Siminialayi, I.; Carter, W.G. In vitro anti-Cholinesterase and antioxidant activity of extracts of Moringa oleifera plants from rivers state, Niger Delta, Nigeria. Medicines 2018, 5, 71. [Google Scholar] [CrossRef]
- Niidome, T.; Takahashi, K.; Goto, Y.; Goh, S.; Tanaka, N.; Kamei, K.; Ichida, M.; Hara, S.; Akaike, A.; Kihara, T.; et al. Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. NeuroReport 2007, 18, 813–816. [Google Scholar] [CrossRef]
- Kuk, E.B.; Jo, A.R.; Oh, S.I.; Sohn, H.S.; Seong, S.H.; Roy, A.; Choi, J.S.; Jung, H.A. AntiAlzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch. Pharm. Res. 2017, 40, 338–349. [Google Scholar] [CrossRef]
- Iqbal, S.; Younas, U.; Sirajuddin; Chan, K.W.; Sarfraz, R.A.; Uddin, K. Proximate composition and antioxidant potential of leaves from three varieties of mulberry (Morus sp.): A comparative study. Int. J. Mol. Sci. 2012, 13, 6651–6664. [Google Scholar] [CrossRef] [PubMed]
- Viapiana, A.; Struck-Lewicka, W.; Konieczynski, P.; Wesolowski, M.; Kaliszan, R. An approach based on HPLC-fingerprint and chemometrics to quality consistency evaluation of Matricaria chamomile L. commercial samples. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela, R.R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- European Pharmacopoeia. Birkenblätter–Betulae Herba 4.00; Council of Europe: Strasbourg, France, 2002; p. 1308. [Google Scholar]
- Polish Pharmacopoeia VI; Polish Pharmaceutical Society: Warszawa, Poland, 2002; p. 150.
- Abdelmageed, O.H.; Khashaba, P.Y.; Askal, H.F.; Saleh, G.A.; Refaat, I.H. Selective spectrophotometric determination of ascorbic acid in drugs and foods. Talanta 1995, 42, 573–579. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessi, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 12, 1242–1251. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Subramanian, S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS ONE 2014, e86804. [Google Scholar] [CrossRef]
- Ferreira, I.; Proenca, A.C.; Serralheiro, M.L.M.; Araujo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Phenolic Compounds | Gallic Acid | Vanillic Acid | Caffeic Acid | Chlorogenic Acid | Ferulic Acid | p-Coumaric Acid | Rosmarinic Acid | Rutin | Apigenin | Quercetin |
---|---|---|---|---|---|---|---|---|---|---|
Range (µg/mL) | 20–200 | 20–140 | 20–140 | 20–200 | 20–200 | 20–200 | 20–200 | 20–200 | 20–200 | 20–140 |
r | 0.998 | 0.991 | 0.989 | 0.985 | 0.999 | 0.997 | 0.998 | 0.998 | 0.983 | 0.985 |
LOD(µg/mL) | 4.05 | 3.76 | 3.76 | 5.86 | 3.43 | 4.17 | 2.54 | 2.76 | 2.87 | 2.98 |
LOQ(µg/mL) | 13.07 | 10.88 | 11.04 | 14.68 | 10.12 | 11.22 | 6.98 | 7.43 | 7.13 | 9.56 |
Intra-day precision | ||||||||||
Nominal conc. (µg/mL) | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Assayed conc. (µg/mL) | 78.4 | 78.2 | 78.7 | 77.6 | 77.3 | 78.5 | 78.1 | 77.8 | 77.6 | 79.2 |
Recovery (%) | 98.0 | 97.7 | 98.3 | 97.0 | 97.8 | 96.8 | 97.6 | 97.2 | 97.0 | 99.0 |
CV (%) | 0.6 | 0.8 | 1.0 | 1.3 | 0.9 | 1.4 | 0.7 | 1.3 | 1.6 | 1.4 |
Inter-day precision | ||||||||||
Nominal conc. (µg/mL) | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Assayed conc. (µg/mL) | 67.6 | 77.2 | 74.3 | 77.0 | 75.5 | 71.8 | 72.5 | 76.1 | 73.6 | 74.6 |
Recovery (%) | 84.7 | 96.5 | 92.8 | 96.2 | 94.3 | 89.7 | 90.6 | 95.1 | 92.0 | 93.2 |
CV (%) | 1.0 | 1.4 | 1.8 | 1.9 | 2.8 | 2.0 | 1.5 | 2.2 | 3.6 | 3.5 |
Recovery | ||||||||||
Mean | 94.8 | 95.3 | 96.8 | 95.7 | 94.1 | 93.8 | 96.5 | 96.4 | 95.8 | 97.5 |
RSD (%) | 2.7 | 1.8 | 3.4 | 3.3 | 4.1 | 2.5 | 3.2 | 1.6 | 1.2 | 3.9 |
Hydromethanolic Extracts | Water Extracts | |||||||
---|---|---|---|---|---|---|---|---|
TPC | TFC | TPAC | ASA | TPC | TFC | TPAC | ASA | |
(mg GAE/g) | (µg QE/g) | (µg CAE/g) | (mg/g) | (mg GAE/g) | (mg QE/g) | (µg CAE/g) | (mg ASA/g) | |
1. | 0.637defg ± 0.03 | 63.87cd ± 1.58 | 32.21f ± 0.58 | 0.322de ± 0.04 | 5.45h ± 0.18 | 0.552g ± 0.01 | 364.17c ± 7.4 | 1.17a ± 0.14 |
2. | 0.717e ± 0.05 | 65.29cd ± 3.35 | 26.43ef ± 1.03d | 0.303cde ± 0.01 | 4.34de ± 0.27 | 0.358c ± 0.05 | 279.00b ± 8.9 | 1.32a ± 0.21 |
3. | 0.257a ± 0.04 | 80.61e ± 1.66 | 21.42bcd ± 0.94 | 0.273bcd ± 0.03 | 4.03cde ± 0.21 | 0.482ef ± 0.02 | 260.78b ± 9.0 | 1.28a ± 0.07 |
4. | 0.724g ± 0.05 | 50.59b ± 8.58 | 31.51ef ± 7.59 | 0.459f ± 0.05 | 4.03cde ± 0.54 | 0.361c ± 0.04 | 518.19e ± 4.4 | 1.48a ± 0.17 |
5. | 0.575cde ± 0.01 | 71.32de ± 5.60 | 66.01i ± 7.39 | 0.631g ± 0.05 | 7.39i ± 0.17 | 0.513fg ± 0.01 | 162.61a ± 6.8 | 1.99b ± 0.18 |
6. | 0.338b ± 0.03 | 30.75a ± 6.17 | 17.86ab ± 0.13 | 0.363e ± 0.01 | 3.56abc ± 0.29 | 0.411d ± 0.03 | 273.16b ± 6.7 | 1.28a ± 0.15 |
7. | 0.692fg ± 0.05 | 79.12e ± 2.10 | 18.42abc ± 1.39 | 0.327de ± 0.03 | 4.13de ± 0.17 | 0.408d ± 0.01 | 452.07d ± 4.4 | 2.05b ± 0.14 |
8. | 0.367b ± 0.06 | 96.38f ± 9.17 | 14.07a ± 0.71 | 0.323de ± 0.01 | 4.53ef ± 0.07 | 0.430d ± 0.06 | 253.35b ± 4.1 | 1.25a ± 0.03 |
9. | 0.350b ± 0.09 | 26.96a ± 0.14 | 12.88a ± 0.21 | 0.124a ± 0.04 | 3.38ab ± 0.15 | 0.234b ± 0.01 | 134.26a ± 2.4 | 1.54a ± 0.22 |
10. | 0.299b ± 0.04 | 26.37a ± 0.29 | 12.96a ± 0.87 | 0.220b ± 0.07 | 3.18a ± 0.17 | 0.191a ± 0.01 | 127.82a ± 2.5 | 2.13b ± 0.52 |
11. | 0.311b ± 0.06 | 93.34f ± 2.76 | 59.75h ± 3.40 | 0.596g ± 0.06 | 8.30j ± 0.24 | 0.494f ± 0.02 | 368.26c ± 7.9 | 2.02b ± 0.13 |
12. | 0.599cdef ± 0.11 | 62.38bc ± 8.51 | 88.11j ± 1.11 | 0.440f ± 0.04 | 4.87g ± 0.13f | 0.495f ± 0.01 | 539.58ef ± 4.5 | 1.28a ± 0.27 |
13. | 0.507c ± 0.03 | 48.07b ± 4.09 | 40.72g ± 1.62 | 0.348e ± 0.04 | 4.25de ± 0.25 | 0.436d ± 0.01 | 426.07d ± 4.9 | 1.31a ± 0.20 |
14. | 0.665efg ± 0.03 | 64.84cd ± 8.02 | 28.33ef ± 0.58 | 0.602g ± 0.05 | 5.31gh ± 0.64 | 0.340c ± 0.02 | 567.77f ± 8.5 | 1.29a ± 0.03 |
15. | 0.542cd ± 0.04 | 48.41b ± 0.86 | 24.87cde ± 0.57 | 0.272bc ± 0.02 | 5.13gh ± 0.24 | 0.448de ± 0.01 | 573.04f ± 2.1 | 1.35a ± 0.18 |
16. | 0.351b ± 0.05 | 58.16bc ± 1.28 | 21.36bcd ± 6.22 | 0.248bcd ± 0.08 | 5.16gh ± 0.23 | 0.408d ± 0.02 | 522.18e ± 3.8 | 2.23b ± 0.16 |
17. | 0.372b ± 0.12 | 58.65bc ± 1.06 | 25.37de ± 0.54 | 0.295cde ± 0.03 | 3.85bcd ± 0.24 | 0.489ef ± 0.01 | 537.70ef ± 8.0 | 1.46a ± 0.17 |
18. | 1.004h ± 0.31 | 47.79b ± 2.26 | 39.71g ± 0.63 | 0.967h ± 0.08 | 3.23a ± 0.22 | 0.607h ± 0.03 | 279.08b ± 8.9 | 1.59a ± 0.34 |
Gallic Acid | Vanillic Acid | Caffeic Acid | Chlorogenic Acid | FERULIC ACID | p-Coumaric Acid | Rosmarinic Acid | Rutin | Apigenin | Quercetin | |
---|---|---|---|---|---|---|---|---|---|---|
Hydromethanolic extracts | ||||||||||
(µg/g) | (µg/g) | (µg/g) | (mg/g) | (µg/g) | (µg/g) | (µg/g) | (mg/g) | (µg/g) | (mg/g) | |
1. | 276.96c±1.92 | nd | 119.23abcd ± 7.25 | 6.91def ± 0.27 | 168.79fg ± 1.82 | 44.11cde ± 12.15 | 164.71a ± 6.58 | 8.83cd ± 1.53 | 282.95ab ± 3.12 | 1.98abc ± 0.36 |
2. | 326.73d±1.60 | 5.99b ± 1.05 | 141.89e ± 9.77 | 9.44efgh ± 0.77 | 173.79gh ± 0.23 | 46.47def ± 2.77 | 173.72a ± 1.43 | 12.35d ± 2.10 | 286.86ab ± 7.04 | 4.70e ± 0.50 |
3. | 51.72a±2.50 | nd | 225.54g ± 3.59 | 8.53defgh ± 3.33 | 263.60i ± 8.63 | 69.95g ± 8.18 | 291.38b ± 0.81 | 5.35c ± 1.25 | 296.63ab ± 2.45 | 3.92de ± 0.46 |
4. | 203.54b±7.62 | nd | 106.40a ± 3.39 | 11.76gh ± 1.78 | 121.25de ± 2.23 | 26.17a ± 4.10 | 193.50a ± 5.69 | 8.95cd ± 4.33 | 290.37ab ± 3.18 | 2.40bcd ± 0.47 |
5. | 346.20d±4.46 | nd | 357.23h ± 2.62 | 5.64bcde ± 0.54 | 128.17def ± 1.02 | 49.44ef ± 2.65 | nd | 6.09c ± 2.61 | 283.56ab ± 1.23 | 0.74ab ± 0.17 |
6. | 357.20d±3.42 | 9.82d ± 1.43 | 108.99ab ± 6.08 | 2.37abc ± 0.10 | 59.24ab ± 1.20 | 33.09abcd ± 10.34 | 130.64a ± 1.96 | 1.83b ± 2.48 | 295.62ab ± 1.19 | 0.65ab ± 0.06 |
7. | 73.04a±6.98 | 6.21b ± 4.49 | 127.67de ± 13.23 | 11.31fgh ± 1.03 | 128.27def ± 2.23 | 41.04bcde ± 8.83 | nd | 11.20d ± 1.33 | 344.22b ± 7.39 | 1.56ab ± 0.54 |
8. | 229.29bc±2.23 | nd | 224.29g ± 10.25 | 11.36fgh ± 5.62 | 166.46fg ± 1.47 | 60.42fg ± 9.08 | nd | 3.12bc ± 1.87 | 315.83a ± 2.14 | 4.09de ± 0.98 |
9. | 302.12d±1.49 | nd | 103.34a ± 4.32 | 2.05ab ± 0.22 | 49.26ab ± 0.18 | 47.80ef ± 16.25 | nd | 0.83a ± 0.04 | 283.63ab ± 1.29 | 0.38a ± 0.01 |
10. | 74.01a±1.63 | nd | 109.30ab ± 8.97 | 1.02a ± 0.06 | 40.07a ± 0.09 | 23.95a ± 1.20 | nd | 0.87a ± 0.16 | 308.99ab ± 0.37 | 0.11a ± 0.03 |
11. | 215.22b±5.61 | nd | 176.07f ± 4.82 | 17.51i ± 5.92 | 111.67cd ± 0.31 | 32.14abc ± 6.69 | 346.65b ± 3.89 | 0.83a ± 0.19 | 289.56ab ± 8.75 | 6.40f ± 0.26 |
12. | 77.44a±8.64 | 7.84c ± 1.62 | 101.47a ± 0.30 | 12.36h ± 6.05 | 101.40cd ± 3.16 | 48.14ef ± 14.21 | 204.50a ± 1.57 | 11.57d ± 5.62 | 326.61b ± 2.89 | 3.48cde ± 2.80 |
13. | 80.24a±4.34 | 7.09c ± 3.12 | 106.52a ± 8.13 | 4.38abcd ± 0.99 | 86.42bcd ± 1.67 | 28.15ab ± 5.59 | 172.81a ± 2.29 | 2.82b ± 0.50 | 340.36b ± 8.57 | 1.48ab ± 0.20 |
14. | 72.58a±3.37 | 2.93a ± 4.98 | 105.92a ± 1.77 | 7.22defg ± 1.26 | 188.92gh ± 3.06 | 55.12ef ± 5.17 | 147.41a ± 1.81 | 5.52c ± 2.35 | 313.62b ± 3.47 | 1.76abc ± 0.58 |
15. | 77.11a±1.16 | 8.63cd ± 1.05 | 113.40bcde ± 1.65 | 6.71abcd ± 0.89 | 115.49efg ± 1.41 | 25.50a ± 6.47 | 209.28a ± 3.65 | 8.68cd ± 4.48 | 293.49ab ± 1.37 | 2.31ab ± 0.43 |
16. | 67.77a±6.19 | nd | 126.59abc ± 4.08 | 4.37cdef ± 0.41 | 154.50cde ± 0.83 | 26.30a ± 3.39 | 348.45b ± 4.81 | 4.03c ± 0.37 | 323.61ab ± 1.26 | 0.79bcd ± 0.18 |
17. | 240.26bc±2.54 | 3.32a ± 2.00 | 136.20de ± 4.25 | 8.20defgh ± 3.46 | 76.81abc ± 3.60 | 26.86a ± 3.34 | 178.88a ± 1.36 | 2.02b ± 0.97 | 288.97ab ± 2.98 | 1.35ab ± 0.33 |
18. | 273.95c±5.30 | nd | 424.00i ± 10.36 | 10.72fgh ± 14.71 | 212.48h ± 2.24 | 44.81cde ± 3.59 | 290.47b ± 3.31 | 17.06e ± 2.01 | 283.18ab ± 1.51 | 6.88f ± 2.50 |
Water extracts | ||||||||||
(mg/g) | (µg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | |
1. | 11.26bcd ± 3.76 | 198.63a ± 1.72 | 0.94abc ± 0.03 | 7.61abc ± 6.23 | 1.43bcd ± 1.08 | 0.29abc ± 0.03 | 7.28ef ± 0.16 | 55.63d ± 0.25 | 2.48a ± 0.16 | 10.10cde ± 0.26 |
2. | 3.78ab ± 0.16 | 335.61ab ± 0.01 | 1.35c ± 0.81 | 1.97a ± 0.16 | 0.62ab ± 0.58 | 1.06ef ± 0.03 | 6.03de ± 0.01 | 22.18c ± 0.36 | 2.52a ± 0.17 | 10.83cdef ± 2.25 |
3. | 1.99a ± 0.21 | 742.27ef ± 0.60 | 1.08abc ± 0.43 | 37.96de ± 6.92 | 1.66bcd ± 0.19 | 0.44abcd ± 0.34 | 3.07abcd ± 3.71 | 13.07b ± 0.98 | 2.37a ± 0.01 | 13.13ef ± 0.65 |
4. | 8.44abcd ± 1.70 | 508.98bcd ± 0.04 | 1.22abc ± 0.35 | 38.15de ± 1.89 | 1.97cd ± 0.36 | 0.79cde ± 0.74 | 3.70abcd ± 0.26 | 30.06cd ± 8.40 | 2.37a ± 0.01 | 10.77cdef ± 1.69 |
5. | 9.12abcd ± 0.42 | 437.40abcd ± 0.24 | 1.09abc ± 0.20 | 14.48abcde ± 3.31 | 1.57bcd ± 0.24 | 0.73bcde ± 0.60 | 3.88abcd ± 0.10 | 25.63c ± 5.52 | 2.35a ± 0.05 | 8.93cd ± 0.59 |
6. | 14.37cd ± 2.32 | 507.93bcd ± 1.52 | 1.17abc ± 0.55 | 30.07abcde ± 2.04 | 2.17d ± 0.97 | 0.79cde ± 0.10 | 3.70abcd ± 0.12 | 46.92d ± 8.98 | 2.57a ± 0.21 | 17.62g ± 7.36 |
7. | 6.42abc ± 0.27 | 319.45abcd ± 2.77 | 0.90a ± 0.54 | 33.79cde ± 3.60 | 0.77ab ± 0.01 | 0.23ab ± 0.17 | 1.90ab ± 0.24 | 12.91b ± 2.12 | 2.37a ± 0.01 | 10.62cde ± 0.41 |
8. | 8.72abcd ± 0.93 | 717.36ef ± 0.02 | 0.91a ± 0.42 | 3.43a ± 0.36 | 1.84cd ± 0.63 | 0.49abcd ± 0.20 | 4.99cde ± 0.70 | 22.91c ± 1.48 | 2.58a ± 0.20 | 5.16ab ± 1.35 |
9. | 9.90abcd ± 1.44 | 228.45a ± 2.02 | 1.02abc ± 0.50 | 2.25a ± 0.32 | 0.83abc ± 0.32 | 0.58abcde ± 0.87 | 4.64bcde ± 0.33 | 36.85cd ± 4.51 | 2.59a ± 0.21 | 11.71def ± 0.56 |
10. | 13.64cd ± 2.56 | 563.60cde ± 2.57 | 1.16abc ± 0.69 | 2.40a ± 0.59 | 1.12abcd ± 0.12 | 0.73bcde ± 0.68 | 3.96abcd ± 0.39 | 33.24cd ± 8.88 | 2.70a ± 0.18 | 3.94ab ± 2.00 |
11. | 1.65a ± 0.36 | 393.81abcd ± 0.17 | 0.89a ± 0.22 | 2.67a ± 1.44 | 0.20a ± 0.00 | 0.92def ± 6.77 | 1.54a ± 1.07 | 9.64a ± 6.88 | 2.33a ± 0.10 | 7.45bc ± 0.58 |
12. | 2.19a ± 0.20 | 326.49abcd ± 2.83 | 1.05abc ± 0.27 | 3.72a ± 0.55 | 1.77bcd ± 0.64 | 0.54abcd ± 0.22 | 9.88f ± 1.20 | 13.00b ± 0.11 | 2.34a ± 0.02 | 5.58ab ± 1.43 |
13. | 7.89abcd ± 0.50 | 365.53abc ± 1.09 | 0.94abc ± 0.44 | 11.66a ± 1.10 | 0.62ab ± 0.01 | 0.18a ± 0.07 | 1.11a ± 0.11 | 14.06b ± 1.44 | 2.37a ± 0.04 | 11.09def ± 0.88 |
14. | 9.30abcd ± 1.68 | 294.78a ± 0.58 | 1.34bc ± 0.11 | 32.26bcde ± 1.92 | 1.76bcd ± 0.93 | 0.91def ± 0.38 | 1.94abc±0.14 | 13.57b ± 8.19 | 2.51a ± 0.16 | 14.33f ± 1.08 |
15. | 9.70abcd ± 1.44 | 322.46a ± 0.12 | 1.20ab ± 0.72 | 5.13abc ± 0.90 | 2.05d ± 0.49 | 1.77def ± 7.88 | 8.85abcd±7.34 | 23.80c ± 1.21 | 2.59a ± 0.08 | 4.70g ± 0.13 |
16. | 17.78abcd ± 4.32 | 204.68ab ± 1.77 | 0.92abc ± 0.71 | 6.19ab ± 1.11 | 1.68bcd ± 1.08 | 0.77cde ± 1.14 | 4.06f ± 0.15 | 18.15bc ± 4.71 | 2.46a ± 0.19 | 20.05h ± 6.98 |
17. | 4.45ab ± 1.73 | 642.82f ± 5.57 | 0.90a ± 0.67 | 2.33a ± 0.39 | 1.16abcd ± 0.68 | 0.45abcd ± 0.57 | 2.95abc ± 1.09 | 87.27e ± 7.31 | 2.57a ± 0.14 | 3.60a ± 0.29 |
18. | 16.08d ± 1.43 | 593.01de ± 1.61 | 1.77d ± 0.24 | 41.18e ± 3.92 | 1.65bcd ± 0.82 | 1.30f ± 0.21 | 1.16a ± 0.27 | 26.51c ± 6.17 | 3.12b ± 0.28 | 23.51h ± 2.20 |
Hydromethanolic Extract | Water Extracts | ||||
---|---|---|---|---|---|
DPPH mg TE/100 g) | FRAP (mmol Fe2+/g) | DPPH (mg TE/100 g) | FRAP (mmol Fe2+/g) | % AChE Inhibition | |
1. | 27.63bc ± 0.78 | 30.16ij ± 0.56 | 55.64c ± 2.56 | 7.40ab ± 1.28 | 29.2 ± 3.32 |
2. | 24.53ab ± 0.29 | 27.38h ± 0.28 | 76.72h ± 3.04 | 6.53ab ± 1.41 | 15.9 ± 5.15 |
3. | 26.42abc ± 1.39 | 30.86ij ± 0.50 | 78.76ij ± 11.72 | 7.47ab ± 0.11 | 37.7 ± 6.59 |
4. | 33.21d ± 0.94 | 29.59d ± 0.35 | 91.08l ± 4.83 | 15.12i ± 0.67 | 36.1 ± 4.07 |
5. | 24.55ab ± 3.47 | 18.10i ± 3.64 | 65.30f ± 2.84 | 8.13bcd ± 0.47 | 2.80 ± 0.54 |
6. | 23.38bc ± 0.17 | 34.10k ± 0.22 | 79.94j ± 7.84 | 7.68abc ± 0.18 | 37.0 ± 4.73 |
7. | 24.91ab ± 0.27 | 20.32e ± 0.24 | 61.75e ± 6.37 | 9.71def ± 1.03 | 13.4 ± 1.23 |
8. | 24.57ab ± 1.15 | 27.35h ± 0.11 | 59.65d ± 2.73 | 9.24cde ± 0.13 | 25.7 ± 2.64 |
9. | 34.60d ± 0.33 | 16.86cd ± 0.31 | 78.01hi ± 5.68 | 6.43ab ± 0.43 | 18.9 ± 0.57 |
10. | 35.74d ± 5.08 | 14.91ab ± 0.59 | 85.62k ± 3.83 | 5.96a ± 0.39 | 7.13 ± 1.87 |
11. | 26.33abc ± 1.81 | 31.64j ± 0.36 | 66.39f ± 6.25 | 10.46efg ± 0.47 | 3.75 ± 0.74 |
12. | 25.65abc ± 1.44 | 24.60g ± 0.46 | 60.09d ± 7.70 | 16.24i ± 1.37 | 30.5 ± 5.80 |
13. | 25.64abc ± 0.68 | 13.49a ± 0.41 | 52.41b ± 6.26 | 11.69gh ± 0.52 | 2.64 ± 1.47 |
14. | 28.70c ± 0.38 | 24.55g ± 0.19 | 98.82m ± 1.52 | 12.46h ± 0.33 | 24.5 ± 2.44 |
15. | 26.72bc ± 0.38 | 23.58bc ± 0.29 | 47.79a ± 2.05 | 11.20gh ± 1.30 | 34.2 ± 1.86 |
16. | 27.50bc ± 0.38 | 25.03g ± 0.19 | 77.99hi ± 3.22 | 11.91fgh ± 1.2 | 36.3 ± 1.34 |
17. | 24.74ab ± 0.87 | 22.72f ± 0.48 | 69.76g ± 5.71 | 16.28i ± 2.0 | 32.5 ± 1.08 |
18. | 27.48bc ± 0.55 | 37.85l ± 0.39 | 64.95f ± 4.71 | 21.21j ± 0.99 | 36.1 ± 4.72 |
No. | Sample Name on the Package | Composition | Confection | Place of Origin of Plant Material |
---|---|---|---|---|
1. | White mulberry (Morus alba L.), supplement dietary | leaf | bags | Poland |
2. | White mulberry (Morus alba L.), supplement dietary | leaf | bags | Poland |
3. | White mulberry (Morus alba L.), supplement dietary | leaf | bags | Poland |
4. | White mulberry (Morus alba L.), supplement dietary | leaf | bags | Bulgaria |
5. | White mulberry (Morus alba L.), supplement dietary | leaf | bags | Poland |
6. | White mulberry (Morus alba L.), supplement dietary | leaf | bags | Poland |
7. | Leaf of white mulberry–express tea, supplement dietary | leaf | bags | Poland |
8. | White mulberry, ecological tea | leaf | bags | Poland |
9. | Ecological white mulberry (Morus alba L.), 100% organic | fruits | loose | Turkey |
10. | White mulberry (Morus alba L.) | fruits | loose | Turkey |
11. | Leaf of white mulberry | leaf | loose | Poland |
12. | White mulberry (Morus alba L.), herbal tea | leaf | loose | Poland |
13. | Leaf of white mulberry, ecological tea | leaf | loose | Poland |
14. | White mulberry, herbal tea | leaf | bags | Poland |
15. | Leaf and fruits of white mulberry | Leaf (90%) and fruits (10%) | loose | Poland |
16. | Leaf of white mulberry, dried herbs | leaf | bags | Poland |
17. | White mulberry 100%, herbal tea | herb | loose | Poland |
18. | White mulberry with Yerba Mate and lemon, express tea | leaf | bags | European Union |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polumackanycz, M.; Sledzinski, T.; Goyke, E.; Wesolowski, M.; Viapiana, A. A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples. Molecules 2019, 24, 3082. https://doi.org/10.3390/molecules24173082
Polumackanycz M, Sledzinski T, Goyke E, Wesolowski M, Viapiana A. A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples. Molecules. 2019; 24(17):3082. https://doi.org/10.3390/molecules24173082
Chicago/Turabian StylePolumackanycz, Milena, Tomasz Sledzinski, Elzbieta Goyke, Marek Wesolowski, and Agnieszka Viapiana. 2019. "A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples" Molecules 24, no. 17: 3082. https://doi.org/10.3390/molecules24173082
APA StylePolumackanycz, M., Sledzinski, T., Goyke, E., Wesolowski, M., & Viapiana, A. (2019). A Comparative Study on the Phenolic Composition and Biological Activities of Morus alba L. Commercial Samples. Molecules, 24(17), 3082. https://doi.org/10.3390/molecules24173082