A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Time-Dependence and pH Effect
2.2. Sensitivity and Selectivity Studies
2.3. Sensing Mechanism Study
2.4. Live Cell Imaging
3. Materials and Methods
3.1. Materials.
3.2. Synthesis and Characterization of Compound Information
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Nadeau, P.J.; Charette, S.J.; Toledano, M.B.; Landry, J. Disulfide Bond-mediated Multimerization of Ask1 and Its Reduction by Thioredoxin-1 Regulate H2O2-induced c-Jun NH2-terminal Kinase Activation and Apoptosis. Mol. Biol. Cell. 2007, 18, 3903–3913. [Google Scholar] [CrossRef]
- Requejo, R.; Hurd, T.R.; Costa, N.J.; Murphy, M.P. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J. 2010, 277, 1465–1480. [Google Scholar] [CrossRef] [Green Version]
- Ghezzi, P.; Bonetto, V.; Fratelli, M. Thiol–Disulfide Balance: From the Concept of Oxidative Stress to that of Redox Regulation. Antioxid. Redox. Signal. 2005, 7, 964–972. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, J.; Ballou, D.P.; Williams, C.H., Jr. Reactivity of Thioredoxin as a Protein Thiol-Disulfide Oxidoreductase. Chem. Rev. 2011, 111, 5768–5783. [Google Scholar] [CrossRef] [Green Version]
- Cross, J.V.; Templeton, D.J. Thiol oxidation of cell signaling proteins: Controlling an apoptotic equilibrium. J. Cell. Biochem. 2004, 93, 104–111. [Google Scholar] [CrossRef]
- Shahrokhian, S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem. 2001, 73, 5972–5978. [Google Scholar] [CrossRef]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; Wilson, W.F.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef]
- Refsum, H.; Ueland, P.M.; Nygard, O.; Vollset, S.E. Homocysteine and cardiovascular disease. Annu. Rev. Med. 1998, 49, 31–62. [Google Scholar] [CrossRef]
- Lee, J.H.; Sharma, A.; Jang, J.H. Real time OFF–ON monitoring of gluthathione (GSH) in living cell. J. Incl. Phenom. Macro. 2015, 82, 117–122. [Google Scholar] [CrossRef]
- Aoyama, K.; Suh, S.W.; Hamby, A.M.; Liu, J.; Chan, W.Y.; Chen, Y.; Swanson, R.A. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat. Neurosci. 2006, 9, 119–126. [Google Scholar] [CrossRef]
- Jung, H.S.; Chen, X.; Peng, X. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem. Soc. Rev. 2013, 42, 6019–6031. [Google Scholar] [CrossRef]
- Lim, S.Y.; Hong, K.H.; Kim, D.I.; Kwon, H.; Kim, H.J. Tunable Heptamethine–Azo Dye Conjugate as an NIR Fluorescent Probe for the Selective Detection of Mitochondrial Glutathione over Cysteine and Homocysteine. J. Am. Chem. Soc. 2014, 136, 7018–7025. [Google Scholar] [CrossRef]
- Zamfir, L.G.; Rotariu, L.; Bala, C. Sensing of sulfhydryl based compounds by a simple electrochemical approach. Sens. Actuators B Chem. 2015, 206, 65–73. [Google Scholar] [CrossRef]
- Yin, J.; Hu, Y.; Yoon, J. Fluorescent probes and bioimaging: Alkali metals, alkaline earth metals and pH. Chem. Soc. Rev. 2015, 44, 4619–4644. [Google Scholar] [CrossRef]
- Farhadi, K.; Forough, M.; Pourhossein, A.; Molaei, R. Highly sensitive and selective colorimetric probe for determination of l-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles. Sens. Actuators B Chem. 2014, 202, 993–1001. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, Z.; Lim, C.W.; Lee, Y.H. Disulfide-cleavage-triggered chemosensors and their biological applications. Chem. Rev. 2013, 113, 5071–5109. [Google Scholar] [CrossRef]
- Shao, J.H.; Sun, H.; Guo, S.; Ji, J.; Zhao, W. A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: An experimental and theoretical study. Chem. Sci. 2012, 3, 1049–1061. [Google Scholar] [CrossRef]
- Ji, W.; Ji, Y.; Jin, Q.; Tong, Q.; Tang, X. Heavy atom quenched coumarin probes for sensitive and selective detection of biothiols in living cells. Analyst. 2015, 140, 4379–4383. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Z.; Wei, R.; Li, K.; Song, K.; Tong, A. A fluorescent probe for thiols based on aggregation-induced emission and its application in live-cell imaging. Dyes Pigment. 2014, 108, 24–31. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Tang, X.; Liu, W.; Jiang, H.; Dou, W.; Liu, W. A colorimetric and fluorescent probe for thiols based on 1, 8-naphthalimide and its application for bioimaging. Dyes Pigment. 2014, 100, 255–260. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.Q.; Zhang, H.; Huo, Y.; Shi, Y.; Shi, H.; Guo, W. A carboxylic acid-functionalized coumarin-hemicyanine fluorescent dye and its application to construct a fluorescent probe for selective detection of cysteine over homocysteine and glutathione. RSC Adv. 2014, 4, 64542–64550. [Google Scholar] [CrossRef]
- Yang, X.F.; Huang, Q.; Zhong, Y.; Li, Z.; Li, H.; Lowry, M.; Strongin, R.M. A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine. Chem. Sci. 2014, 5, 2177–2183. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.Y.; Guan, Y.S.; Chen, Y.Z.; Wu, L.Z.; Tung, C.H.; Yang, Q. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. J. Am. Chem. Soc. 2012, 134, 18928–18931. [Google Scholar] [CrossRef]
- Liu, Y.C.; Xiang, K.Q.; Tian, B.Z. A fluorescein-based fluorescence probe for the fast detection of thiol. Tetra. Lett. 2016, 3, 2478–2483. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Gao, H.; Zan, W.Y.; Li, Y. A rational designed thiols fluorescence probe: The positional isomer in PET. Tetrahedron. 2016, 72, 2048–2056. [Google Scholar] [CrossRef]
- Liao, Y.C.; Venkatesan, P.; Wei, L.F.; Wu, S.P. A coumarin-based fluorescent probe for thiols and its application in cell imaging. Sens. Actuators B Chem. 2016, 232, 732–737. [Google Scholar] [CrossRef]
- Guo, Z.; Nam, S.; Park, S.; Yoon, J. A highly selective ratiometric near-infrared fluorescent cyanine sensor for cysteine with remarkable shift and its application in bioimaging. Chem. Sci. 2012, 3, 2760–2765. [Google Scholar] [CrossRef]
- Rusin, O.; Luce NN, S.; Agbaria, R. Visual Detection of Cysteine and Homocysteine. J. Am. Chem. Soc. 2004, 2, 438–439. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Y.; Strongin, R.M. Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angew. Chem. Int. Ed 2011, 50, 10690–10693. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Yang, X.F.; Zhong, Y.; Guo, Y.; Li, Z.; Li, H. Native Chemical Ligation Combined with Spirocyclization of Benzopyrylium Dyes for the Ratiometric and Selective Fluorescence Detection of Cysteine and Homocysteine. Anal. Chem. 2014, 3, 1800–1807. [Google Scholar] [CrossRef]
- Azuma, K.; Suzuki, S.; Uchiyama, S.; Kajiro, T.; Santa, T. A study on the thermal decomposition of KClO4and NaClO4by acoustic emission thermal analysis. Photobiol. Sci. 2003, 2, 443–449. [Google Scholar] [CrossRef]
- An, R.B.; Wei, P.; Zhang, D.T.; Su, N. A highly selective 7-hydroxy-3-methyl-benzoxazinone based fluorescent probe for instant detection of thiophenols in environmental samples. Tetra. Lett. 2016, 57, 3039–3042. [Google Scholar] [CrossRef]
- Manna, S.; Karmakar, P.; Ali, S.S.; Guria, U.N.; Mahapatra, A.K. Michael addition-cyclization-based switch-on fluorescent chemodosimeter for Cysteine and its application in living cell imaging. New. J. Chem. 2018, 42, 4951–4958. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, C.; Zhang, J.; Zhu, X.; Liu, X.; Wang, Q.; Zhang, H. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells. Spectrochim. Acta. A. 2016, 166, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhang, T.; Miao, J.Y.; Zhao, B.X. A ratiometric fluorescent probe with DNBS group for biothiols in aqueous solution. Sens. Actuators B Chem. 2016, 223, 274–279. [Google Scholar] [CrossRef]
- Dong, C.; Zhou, C.Q.; Yang, J.W.; Liao, T.C.; Chen, J.X.; Yin, C.X.; Chen, W.H. A novel 3,6-diamino-1,8-naphthalimide derivative as a highly selective fluorescent “turn-on” probe for thiols. RSC Adv. 2015, 5, 32990–32993. [Google Scholar] [CrossRef]
- Hu, Q.H.; Yu, C.M.; Xi, X.; Wu, S.Z. A fluorescent probe for simultaneous discrimination of GSH and Cys/Hcy in human serum samples via distinctly-separated emissions with independent excitations. Biosen. Bioelectron. 2016, 81, 341–348. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yu, B.F.; Ning, L.; Zhu, X.Y.; Wang, J.X.; Chen, Z.J.; Liu, X.Y.; Yao, X.J.; Zhang, X.Y.; Zhang, H.X. A Near-Infrared Fluorescence Probe for Thiols Based on Analyte-Specific Cleavage of Carbamate and Its Application in Bioimaging. Eur. J. Org. Chem. 2015, 8, 1711–1718. [Google Scholar] [CrossRef]
- Chen, W.; Luo, H.; Liu, X.; Foley, J.W.; Song, X. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo. Anal. Chem. 2016, 16, 3638–3646. [Google Scholar] [CrossRef]
- Liu, T.; Huo, F.; Yin, C.; Li, J.; Chao, J.; Zhang, Y. A triphenylamine as a fluorophore and maleimide as a bonding group selective turn-on fluorescent imaging probe for thiols. Dyes Pigment. 2016, 128, 209–214. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds PBOH and PBD are not available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Zhang, D.; An, R.; Zhu, Y. A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications. Molecules 2019, 24, 3102. https://doi.org/10.3390/molecules24173102
Li B, Zhang D, An R, Zhu Y. A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications. Molecules. 2019; 24(17):3102. https://doi.org/10.3390/molecules24173102
Chicago/Turabian StyleLi, Bin, Datong Zhang, Ruibing An, and Yaling Zhu. 2019. "A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications" Molecules 24, no. 17: 3102. https://doi.org/10.3390/molecules24173102
APA StyleLi, B., Zhang, D., An, R., & Zhu, Y. (2019). A 7-Hydroxybenzoxazinone-Containing Fluorescence Turn-On Probe for Biothiols and Its Bioimaging Applications. Molecules, 24(17), 3102. https://doi.org/10.3390/molecules24173102