Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Polyphenolic Compounds by High-Performance Liquid Chromatography-Diode Array Detection-Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI (+)-MS)
2.2. The Content of Total Polyphenols, Flavonoids, and Phenolic Acid
2.3. Antibacterial Assays
3. Materials and Methods
3.1. Chemicals and Instrumentation
3.2. Plant Material and Extraction Procedure
3.3. HPLC-DAD-ESI (+) MS
Apparatus and Chromatographic Conditions
3.4. Quantification of Total Polyphenols, Flavonoids, and Phenolic acids Content
3.5. Antibacterial Activity Test
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tohidi, B.; Rahimmalek, M.; Trindade, H. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind. Crops Prod. 2019, 134, 89–99. [Google Scholar] [CrossRef]
- Benedec, D.; Hanganu, D.; Oniga, I.; Tiperciuc, B.; Olah, N.-K.; Raita, O.; Bischin, C.; Silaghi-Dumitrescu, R.; Vlase, L. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential. Pak. J. Pharm. Sci. 2015, 28, 2297–2303. [Google Scholar] [PubMed]
- Salehi, B.; Abu-Darwish, M.S.; Tarawneh, A.H.; Cabral, C.; Gadetskaya, A.V.; Salgueiro, L.; Hosseinabadi, T.; Rajabi, S.; Chanda, W.; Sharifi-Rad, M.; et al. Thymus spp. Plants-Food applications and phytopharmacy properties. Trends Food Sci. Technol. 2019, 85, 287–306. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Maksimović, M. Chemical composition and bioactivity of essential oil from Thymus species in Balkan Peninsula. Phytochem. Rev. 2015, 14, 335–352. [Google Scholar] [CrossRef]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmonson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea (Diapensiaceae to Myoporaceae). Vol. 3; Cambridge University Press: London, UK, 2010; pp. 172–182. [Google Scholar]
- Stahl-Biskup, E.; Saez, F. The genus Thymus. In Medicinal and Aromatic Plants-Industrial Profiles; Taylor and Francis: London, UK, 2002; pp. 1–43. [Google Scholar]
- Šoštarić, I.; Liber, Z.; Grdisa, M.; Marin, P.D.; Dajic Stevanovic, Z.; Satovic, Z. Genetic diversity and relationships among species of the genus Thymus, L. (section Serpyllum). Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 654–661. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Schött, G.; Liesegang, S.; Gaunitz, F.; Gleß, A.; Basche, S.; Hannig, C.; Speer, K. The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia 2017, 121, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Raudone, L.; Zymone, K.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V.; Janulis, V. Phenological changes in triterpenic and phenolic composition of Thymus, L. species. Ind. Crops Prod. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Trindade, H.; Pedro, L.G.; Figueiredo, A.C.; Barroso, J.G. Chemotypes and terpene synthase genes in Thymus genus: State of the art. Ind. Crops Prod. 2018, 124, 530–547. [Google Scholar] [CrossRef]
- Marin, P.D.; Grayer, R.J.; Kite, G.C.; Matevski, V. External leaf flavonoids of Thymus species from Macedonia. Biochem. Syst. Ecol. 2003, 31, 1291–1307. [Google Scholar] [CrossRef]
- Săvulescu, T. Flora Republicii Populare Române; Editura Academiei Republicii Populare Române: Bucureşti, Romania, 1955; Volume 8, pp. 301–334. [Google Scholar]
- Ciocârlan, V. Flora ilustrată a României, Pteridophyta et Spermatophyta; Editura Ceres: Bucureşti, Romania, 2000; pp. 662–667. [Google Scholar]
- Sârbu, I.; Ştefan, N.; Oprea, A. Plante vasculare din România; Editura Victor B Victor: Bucureşti, Romania, 2013; pp. 666–674. [Google Scholar]
- Diklic, N. Thymus, L. In Flora SR Srbije; Josifovic, M., Ed.; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1974; pp. 475–509. [Google Scholar]
- Arsenijević, J.; Marković, J.; Šoštarić, I.; Ražić, S. A chemometrics as a powerful tool in the elucidation of the role of metals in the biosynthesis of volatile organic compounds in Hungarian thyme samples. Plant Physiol. Biochem. 2013, 71, 298–306. [Google Scholar] [CrossRef]
- Maksimović, Z.; Milenković, M.; Vučićević, D.; Ristić, M. Chemical composition and antimicrobial activity of Thymus pannonicus All. (Lamiaceae) essential oil. Cent. Eur. J. Biol. 2008, 3, 149–154. [Google Scholar] [CrossRef]
- Pluhár, Z.; Sárosi, S.; Pintér, A.; Simkó, H. Essential oil polymorphism of wild growing Hungarian thyme (Thymus pannonicus) populations in the Carpathian Basin. Nat. Prod. Commun. 2010, 5, 1681–1686. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Badalica-Petrescu, M.; Dragan, S.; Ranga, F.; Fetea, F.; Socaciu, C. Comparative HPLC-DAD-ESI(+)MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2014, 42, 9–18. [Google Scholar] [CrossRef]
- Petrović, S.; Ušjak, L.; Milenković, M.; Arsenijević, J.; Drobac, M.; Drndarević, A.; Niketić, M. Thymus dacicus as a new source of antioxidant and antimicrobial metabolites. J. Funct. Foods 2017, 28, 114–121. [Google Scholar] [CrossRef]
- Ćebović, T.; Arsenijević, J.; Drobac, M.; Živković, J.; Šoštarić, I.; Maksimović, Z. Potential use of deodorised water extracts: Polyphenol-rich extract of Thymus pannonicus All. as a chemopreventive agent. J. Food Sci. Technol. 2017, 55, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Arsenijević, J.; Drobac, M.; Šoštarić, I.; Ražić, S.; Milenković, M.; Couladis, M.; Maksimović, Z. Bioactivity of herbal tea of Hungarian thyme based on the composition of volatiles and polyphenolics. Ind. Crop Prod. 2016, 89, 14–20. [Google Scholar] [CrossRef]
- Benedec, D.; Oniga, I.; Kozma-Imre, A.; Hanganu, D.; Țărmure, V.; Bodoki, E. Determination of rosmarinic acid by HPTLC-image analysis in medicinal teas and their biological properties. Farmacia 2017, 65, 605–609. [Google Scholar]
- Nunes, S.; Madureira, A.R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F. Therapeutic and nutraceutical potential of rosmarinic acid—Cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Kuang, L.; Xu, X.R.; Zhang, Y.; Xia, E.Q.; Song, F.L.; Li, H.B. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules 2010, 15, 5988–5997. [Google Scholar] [CrossRef] [PubMed]
- Benedec, D.; Vlase, L.; Oniga, I.; Mot, A.C.; Silaghi-Dumitrescu, R.; Hanganu, D.; Tiperciuc, B.; Crişan, G. LC-MS analysis and antioxidant activity of phenolic compounds from two indigenous species of Mentha. Note, I. Farmacia 2013, 61, 262–267. [Google Scholar]
- Benedec, D.; Vlase, L.; Hanganu, D.; Oniga, I. Antioxidant Potential and Polyphenolic Content of Romanian Ocimum basilicum. Dig. J. Nanomater. Biostruct. 2012, 7, 1263–1270. [Google Scholar]
- Benedec, D.; Hanganu, D.; Oniga, I.; Filip, L.; Bischin, C.; Silaghi-Dumitrescu, R.; Tiperciuc, B.; Vlase, L. Achillea schurii flowers: Chemical, antioxidant, and antimicrobial investigations. Molecules 2016, 21, 1050. [Google Scholar] [CrossRef] [PubMed]
- Olah, N.-K.; Osser, G.; Câmpean, R.F.; Furtuna, F.R.; Benedec, D.; Filip, L.; Raita, O.; Hanganu, D. The study of polyphenolic compounds profile of some Rosmarinus officinalis L. extracts. Pak. J. Pharm. Sci. 2016, 29, 2355–2361. [Google Scholar] [PubMed]
- Oniga, I.; Puşcaş, C.; Silaghi-Dumitrescu, R.; Olah, N.-K.; Sevastre, B.; Marica, R.; Marcus, I.; Sevastre-Berghian, A.C.; Benedec, D.; Pop, C.E.; et al. Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules 2018, 23, 2077. [Google Scholar] [CrossRef]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26, 1–7. [Google Scholar] [CrossRef]
- De Martino, L.; Bruno, M.; Formisano, C.; De Feo, V.; Napolitano, F.; Rosselli, S.; Senatore, F. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in Southern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef]
- Mancini, E.; Senatore, F.; Del Monte, D.; De Martino, L.; Grulova, D.; Scognamiglio, M.; Snoussi, M.; De Feo, V. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 2015, 20, 12016–12028. [Google Scholar] [CrossRef]
- Fani, M.; Kohanteb, J. In Vitro Antimicrobial Activity of Thymus vulgaris Essential Oil Against Major Oral Pathogens. J. Evid.-Based Complement. Altern. Med. 2017, 22, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Alali, W.Q.; Hofacre, C.L.; Mathis, G.F.; Faltys, G. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Poult. Sci. 2013, 92, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phyther. Res. 2018, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Johny, A.K.; Hoagland, T.; Venkitanarayanan, K. Effect of Subinhibitory Concentrations of Plant-Derived Molecules in Increasing the Sensitivity of Multidrug-Resistant Salmonella enterica Serovar Typhimurium DT104 to Antibiotics. Foodborne Pathog. Dis. 2010, 7, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Gong, J.; Chanas, C.; Cui, S.; Yu, H.; Caballero, C.; Friendship, R.M. In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella serotype Typhimurium DT104: Effects of pig diets and emulsification in hydrocolloids. J. Appl. Microbiol. 2006, 101, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Asbaghian, S.; Shafaghat, A.; Zarea, K.; Kasimov, F.; Salimi, F. Comparison of Volatile Constituents, and Antioxidant and Antibacterial Activities of the Essential Oils of Thymus caucasicus, T. kotschyanus and T. vulgaris. Nat. Prod. Commun. 2019, 6, 137–140. [Google Scholar] [CrossRef]
- Jia, H.L.; Ji, Q.L.; Xing, S.L.; Zhang, P.H.; Zhu, G.L.; Wang, X.H. Chemical composition and antioxidant, antimicrobial activities of the essential oils of Thymus marschallianus Willd. and Thymus proximus Serg. J. Food Sci. 2010, 75, 59–65. [Google Scholar] [CrossRef]
- Sharifi, A.; Mohammadzadeh, A.; Salehi, T.Z.; Mahmoodi, P. Anti-bacterial, anti-biofilm and anti-quorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. J. Appl. Microbiol. 2018, 124, 379–388. [Google Scholar] [CrossRef]
- Mcewen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 62, 1–26. [Google Scholar] [CrossRef]
- Stan, R.L.; Hangan, A.C.; Dican, L.; Sevastre, B.; Hanganu, D.; Cătoi, C.; Sarpataki, O.; Ionescu, C.M. Comparative study concerning mistletoe viscotoxins antitumor activity. Acta Biol. Hung. 2013, 64, 279–288. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia Commission. European Pharmacopoeia, 9th ed.; European Directorate for the Quality of Medicines & Health Care: Strasbourg, France, 2017. [Google Scholar]
- Benedec, D.; Vlase, L.; Oniga, I.; Mot, A.C.; Damian, G.; Hanganu, D.; Duma, M.; Silaghi-Dumitrescu, R. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules 2013, 18, 8725–8739. [Google Scholar] [CrossRef] [PubMed]
- Ielciu, I.; Frederich, M.; Hanganu, D.; Angenot, L.; Olah, N.-K.; Ledoux, A.; Crişan, G.; Păltinean, R. Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants 2019, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Ielciu, I.; Hanganu, D.; Păltinean, R.; Vlase, L.; Frédérich, M.; Gheldiu, A.-M.; Benedec, D.; Crişan, G. Antioxidant capacity and polyphenolic content of the Echinocystis lobata (Michx.) Torr. et A.Gray flowers. Pak. J. Pharm. Sci. 2018, 31, 677–683. [Google Scholar] [PubMed]
- Ielciu, I.; Vlase, L.; Frédérich, M.; Hanganu, D.; Păltinean, R.; Cieckiewicz, E.; Olah, N.-K.; Gheldiu, A.-M.; Crişan, G. Polyphenolic profile and biological activities of the leaves and aerial parts of Echinocystis lobata (Michx.) Torr. et A. Gray (Cucurbitaceae). Farmacia 2017, 65, 179–183. [Google Scholar]
- Niculae, M.; Stan, L.; Pall, E.; Paştiu, A.I.; Balaci, I.M.; Muste, S.; Spînu, M. In vitro synergistic antimicrobial activity of Romanian propolis and antibiotics against Escherichia coli isolated from bovine mastitis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2015, 43, 327–334. [Google Scholar] [CrossRef]
- Pavithra, P.; Janani, V.; Charumathi, K.; Indumathy, R.; Potala, S.; Verma, R.S. Antibacterial activity of plants used in Indian herbal medicine. Int. J. Green Pharm. 2010, 4, 22–28. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Polyphenolic Compound/no.peak | [M − H] m/z | Rt ± SD (min) | Concentration (mg/g d.w.) | |
---|---|---|---|---|
TMc | TMs | |||
Luteolin-7-O-glucuronide/1 | 463 | 15.69 ± 0.07 | 20.20 ± 0.85 | 38.63 ± 0.92 ** |
Quercetin-3-O-glucoside (isoquercitrin)/2 | 465 | 16.20 ± 0.04 | 2.56 ± 0.05 | 4.11 ± 0.12 ** |
Quercetin-7-O-arabinoside/3 | 435 | 16.65 ± 0.05 | 2.09 ± 0.09 ** | 1.64 ± 0.07 |
Apigenin-7-O-glucuronide/4 | 447 | 17.35 ± 0.08 | 10.32 ± 0.72 | 17.02 ± 0.89 ** |
Methyl-rosmarinate/5 | 375 | 17.90 ± 0.10 | 29.39 ± 0.97 * | 24.68 ± 0.85 |
Rosmarinic acid/6 | 361 | 18.68 ± 0.10 | 8.44 ± 0.73 ** | 1.40 ± 0.02 |
Quercetin/7 | 303 | 20.18 ± 0.13 | 2.06 ± 0.07 | 4.64 ± 0.12 ** |
Luteolin/8 | 287 | 21.55 ± 0.08 | 0.84 ± 0.03 | 2.36 ± 0.09 ** |
Apigenin/9 | 271 | 23.23 ± 0.06 | 2.77 ± 0.03 | 4.87 ± 0.12 ** |
Samples | TPC (mg GAE/g d.w.) | TFC (mg RE/g d.w.) | TPA (mg RAE/g d.w.) |
---|---|---|---|
TMc | 61.99 ± 0.31 | 16.69 ± 0.51 | 26.51 ± 0.61 |
TMs | 59.89 ± 0.42 | 28.98 ± 0.32 | 25.48 ± 0.23 |
Zone of Inhibition (mm) | ||||||
---|---|---|---|---|---|---|
Samples | Staphylococcus aureus | Staphylococcus pseudintermedius | Bacillus cereus | Salmonella enteritidis | Salmonella typhimurium | Enterococcus faecalis |
TMc | 17.33 ± 0.58 | 16.67 ± 0.58 | 16 ± 0.0 | 10 ± 0.0 | n.a. | n.a. |
TMs | 22.67 ± 0.58 | 19.33 ± 0.58 | 20.33 ± 0.58 | 10.33 ± 0.58 | n.a. | 10 ± 0.0 |
Gentamicin | 18 ± 0.00 | 16 ± 0.00 | 21 ± 0.00 | 18 ± 0.00 | 17 ± 0.00 | 17 ± 0.00 |
MIC index MBC (µg/mL)/MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|
Samples | Staphylococcus aureus | Staphylococcus pseudintermedius | Bacillus cereus | Salmonella enteritidis | Salmonella typhimurium | Enterococcus faecalis |
TMc | 8.01 (625/78) | 2 (625/312) | 1 (39/39) | 16.02 (625/39) | n.a. | n.a. |
TMs | 8 (312/39) | 1 (312/312) | 1 (39/39) | 1 (625/625) | n.a | 1 (39/39) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niculae, M.; Hanganu, D.; Oniga, I.; Benedec, D.; Ielciu, I.; Giupana, R.; Sandru, C.D.; Ciocârlan, N.; Spinu, M. Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd. Molecules 2019, 24, 3101. https://doi.org/10.3390/molecules24173101
Niculae M, Hanganu D, Oniga I, Benedec D, Ielciu I, Giupana R, Sandru CD, Ciocârlan N, Spinu M. Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd. Molecules. 2019; 24(17):3101. https://doi.org/10.3390/molecules24173101
Chicago/Turabian StyleNiculae, Mihaela, Daniela Hanganu, Ilioara Oniga, Daniela Benedec, Irina Ielciu, Radu Giupana, Carmen Dana Sandru, Nina Ciocârlan, and Marina Spinu. 2019. "Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd" Molecules 24, no. 17: 3101. https://doi.org/10.3390/molecules24173101
APA StyleNiculae, M., Hanganu, D., Oniga, I., Benedec, D., Ielciu, I., Giupana, R., Sandru, C. D., Ciocârlan, N., & Spinu, M. (2019). Phytochemical Profile and Antimicrobial Potential of Extracts Obtained from Thymus marschallianus Willd. Molecules, 24(17), 3101. https://doi.org/10.3390/molecules24173101