Etlingera elatior-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Phenolic and Flavonoids Compounds
2.2. Characterisation of Synthesised Gold Nanoparticles
2.2.1. Characterisation via Physical Observation and Ultraviolet-Visible Spectroscopy
2.2.2. Characterisation via Fourier Transform Infrared Spectroscopy
2.2.3. Characterisation via High-Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray
2.2.4. Characterisation via Dynamic Light Scattering (DLS)
2.3. Electrochemical Properties of the Modified SPCE
2.4. Detection of Copper (Cu) Ions using SPCE/Cs/AuNPs
3. Materials and Methods
3.1. Materials
3.2. Preparation of Etlingera elatior Extract
3.3. Determination of Polyphenolic Compounds of Etlingera elatior Extract
3.3.1. Total Phenolic Content (TPC)
3.3.2. Total Flavonoid Content (TFC)
3.4. Green Synthesis of Gold Nanoparticles using the E. elatior Extract
3.5. Characterisation of Synthesised Gold Nanoparticles
3.5.1. Ultraviolet-Visible Spectroscopy
3.5.2. Fourier Transform Infrared Spectroscopy
3.5.3. High-Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray
3.5.4. Dynamic Light Scattering (DLS) Measurements
3.6. Modification of Screen-Printed Carbon Electrode (SPCE) using Synthesised AuNPs
3.6.1. Preparation of Modified SPCE
3.6.2. Electrochemical Characterisation of Modified SPCE
3.6.3. Detection of Heavy Metal using Modified SPCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sadeghi, B.; Mohammadzadeh, M.; Babakhani, B. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. J. Photochem. Photobiol. B Biol. 2015, 148, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Gil, P.R.; Zhang, F.; Zanella, M.; Parak, W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed. 2014, 9, 4007–4021. [Google Scholar]
- Yasmin, A.; Ramesh, K.; Rajeshkumar, S. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Converg. 2014, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 2014, 6, 35–44. [Google Scholar] [CrossRef]
- Shankar, S.; Rakhi, D. Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Appl. Nanosci. 2014, 4, 485–490. [Google Scholar]
- Wong, S.; Shamsuddin, M.; Alizadeh, A.; Yun, Y.; Biotechnology, E. Single-step in situ seed-mediated biogenic synthesis of Au, Pd and Au-Pd nanoparticles by Etlingera elatior leaf extract. In Proceedings of the Regional Annual Fundamental Science Symposium, Persada Johor International Convention Centre, Johor Bahru, Malaysia, 8–11 September 2014; 2014; pp. 1–7. [Google Scholar]
- Skerget, M.; Kotnik, P.; Hadolin, M.; Ri, A.; Simoni, M. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Jacobo-Velazquez, D.A.; Cisneros-Zevallos, L. Correlations of Antioxidant Activity against Phenolic Content Revisited: A New Approach. J. Food Sci. 2009, 74, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Koo, N.; Min, D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Yanishlieva-Maslarova, N.V. Inhibiting oxidation. In Antioxidants in Food, 1st ed.; Pokorny, J., Yanishlieva, N., Gordon, M., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2001; ISBN 0849312221. [Google Scholar]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.; Khatib, A.; Abdull Razis, A. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef]
- Wijekoon, M.M.J.O.; Bhat, R.; Karim, A.A. Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. J. Food Compos. Anal. 2011, 24, 615–619. [Google Scholar] [CrossRef]
- Basavegowda, N.; Sobczak-kupiec, A.; Malina, D.; Yathirajan, H.; Keerthi, V.; Chandrashekar, N.; Dinkar, S.; Liny, P. Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (pineapple) and evaluation of biological activities. Adv. Mater. Lett. 2013, 4, 332–337. [Google Scholar] [CrossRef]
- Sujitha, M.V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 102, 15–23. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Girilal, M.; Venkatesan, R.; Kalaichelvan, P.T. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surfaces B Biointerfaces 2011, 88, 287–291. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, O.N. One-step green synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis. Nanoscale Res. Lett. 2015, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.J.; Sharma, P.; Borthakur, B.B.; Das, R.K.; Nahar, P.; Bora, U. Synthesis of Gold Nanoparticles Using Mentha arvensis Leaf Extract. Int. J. Green Nanotechnol. Phys. Chem. 2010, 2, 62–68. [Google Scholar] [CrossRef]
- Bhau, B.S.; Ghosh, S.; Puri, S.; Borah, B.; Sarmah, D.K.; Khan, R. Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv. Mater. Lett. 2015, 6, 55–58. [Google Scholar] [CrossRef]
- Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009, 44, 1133–1138. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, D.; Zhang, G.; He, N.; Liu, H.; Huang, J.; Odoom-wubah, T.; Li, Q. Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract. J. Nanoparticle Res. 2013, 15, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Ding, X.; Xu, Q.; Wang, J.; Wang, L.; Lou, X. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids Surfaces B Biointerfaces 2016, 148, 541–548. [Google Scholar] [CrossRef]
- Wu, K.-H.; Wang, J.-C.; Yu, S.-Y.; Yan, B.-D. A screen-printed carbon electrode modified with a chitosan-based film for in situ heavy metal ions measurement. Int. J. Environ. Agric. Biotechnol. 2018, 3, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Tayeb, I.A.; Razak, K.A. Development of gold nanoparticles modified electrodes for the detection of heavy metal ions development of gold nanoparticles modified electrodes for the detection of heavy metal ions. J. Phys. Conf. Ser. 2018, 1083, 1–7. [Google Scholar] [CrossRef]
- Bastos-Arrieta, J.; Florido, A.; Pérez-Ràfols, C.; Serrano, N.; Fiol, N.; Poch, J.; Villaescusa, I. Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 2018, 8, 946. [Google Scholar] [CrossRef]
- Emmanuel, R.; Karuppiah, C.; Chen, S.M.; Palanisamy, S.; Padmavathy, S.; Prakash, P. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia. J. Hazard. Mater. 2014, 279, 117–124. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, K.; Bai, D.; Zhu, Z. Synthesis and electrochemical sensing toward heavy metals of bunch-like bismuth nanostructures. Nanoscale Res. Lett. 2010, 5, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Analytical Electrochemistry, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000; ISBN 0471282723. [Google Scholar]
- Gorjanović, S.Ž.; Alvarez-Suarez, J.M.; Novaković, M.M.; Pastor, F.T.; Pezo, L.; Battino, M.; Sužnjević, D.Ž. Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays. J. Food Compos. Anal. 2013, 30, 13–18. [Google Scholar] [CrossRef]
- Kamboj, R.; Bera, M.B.; Nanda, V. Evaluation of physico-chemical properties, trace metal content and antioxidant activity of Indian honeys. Int. J. food Sci. Technol. 2013, 578–587. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Etlingera elatior extract and gold nanoparticles are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azri, F.A.; Selamat, J.; Sukor, R.; Yusof, N.A.; Ahmad Raston, N.H.; Nordin, N.; Jambari, N.N. Etlingera elatior-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer. Molecules 2019, 24, 3141. https://doi.org/10.3390/molecules24173141
Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, Jambari NN. Etlingera elatior-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer. Molecules. 2019; 24(17):3141. https://doi.org/10.3390/molecules24173141
Chicago/Turabian StyleAzri, Farah Asilah, Jinap Selamat, Rashidah Sukor, Nor Azah Yusof, Nurul Hanun Ahmad Raston, Noordiana Nordin, and Nuzul Noorahya Jambari. 2019. "Etlingera elatior-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer" Molecules 24, no. 17: 3141. https://doi.org/10.3390/molecules24173141
APA StyleAzri, F. A., Selamat, J., Sukor, R., Yusof, N. A., Ahmad Raston, N. H., Nordin, N., & Jambari, N. N. (2019). Etlingera elatior-Mediated Synthesis of Gold Nanoparticles and Their Application as Electrochemical Current Enhancer. Molecules, 24(17), 3141. https://doi.org/10.3390/molecules24173141