Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. I. Structures and Thermal Effects
Abstract
:1. Introduction
2. Experimental and Computational Details
3. Results and Discussion
3.1. Structure and Energetics of 1:1 GA⋯N2 Complexes
3.2. Computed Spectra
3.3. Experimental Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pimentel, G.C.; McClellan, A.L. Hydrogen Bond; Freeman: San Francisco, CA, USA, 1960. [Google Scholar]
- Scheiner, S. Hydrogen Bonding. A Theoretical Perspective; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Klemperer, W.; Vaida, V. Molecular complexes in close and far away. Proc. Natl. Acad. Sci. USA 2006, 103, 10584–10588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigasin, A.A.; Slanina, Z. (Eds.) Molecular Complexes in Earth’s, Planetary, Cometary, and Interstellar Atmospheres; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1998. [Google Scholar]
- Vaida, V. Perspective: Water cluster mediated atmospheric chemistry. J. Chem. Phys. 2011, 135, 020901. [Google Scholar] [CrossRef] [PubMed]
- Khriachtchev, L. Matrix isolation studies of noncovalent interactions: More sophisticated approaches. J. Phys. Chem. A 2015, 119, 2735–2746. [Google Scholar] [CrossRef] [PubMed]
- Khriachtchev, L. Physics and Chemistry at Low Temperatures; Pan Stanford Publishing: Singapore, 2012. [Google Scholar]
- Wierzejewska, M.; Olbert-Majkut, A. Matrix isolation spectra and ab initio calculations of isothiocyanic acid complexes with carbon monoxide. J. Phys. Chem. A 2003, 107, 1928–1934. [Google Scholar] [CrossRef]
- Olbert-Majkut, A.; Lundell, J.; Wierzejewska, M. Light-induced opening and closing of the intramolecular hydrogen bond in glyoxylic acid. J. Phys. Chem. A 2014, 118, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Lundell, J.; Olbert-Majkut, A. Isolated glyoxylic acid-water complexes in low temperature argon matrices. Spectrochim. Acta A. 2015, 136, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Haupa, K.; Bil, A.; Mielke, Z. Donor-acceptor complexes between ammonia and sulfur trioxide: An FTIR and computational study. J. Phys. Chem. A 2015, 119, 10724–10734. [Google Scholar] [CrossRef] [PubMed]
- Haupa, K.; Bil, A.; Barnes, A.; Mielke, Z. Isomers of the acetic acid–water complex trapped in an argon matrix. J. Phys. Chem. A 2014, 119, 2522–2531. [Google Scholar] [CrossRef]
- Krupa, J.; Wierzejewska, M. Structural and spectroscopic properties of complexes formed between HNCS and SO2 in low temperature matrices. Spectrochim. Acta A. 2017, 183, 144–149. [Google Scholar] [CrossRef]
- Biczysko, M.; Krupa, J.; Wierzejewska, M. Theoretical studies of atmospheric molecular complexes interacting with NIR to UV light. Faraday Discuss. 2018, 212, 421–441. [Google Scholar] [CrossRef]
- Hollenstein, H.; Schär, R.W.; Schwizgebel, N.; Grassi, G.; Günthard, H.H. A transferable valence force field for polyatomic molecules. A scheme for glycolic acid and methyl glycolate. Spectrochim. Acta A 1983, 39, 193–213. [Google Scholar] [CrossRef]
- Hollenstein, H.; Ha, T.K.; Günthard, H.H. IR induced conversion of rotamers, matrix spectra, ab initio calculation of conformers, assignment and valence force field of trans glycolic acid. J. Mol. Struct. 1986, 146, 289–307. [Google Scholar] [CrossRef]
- Reva, I.D.; Jarmelo, S.; Lapinski, L.; Fausto, R. IR-induced photoisomerization of glycolic acid isolated in low-temperature inert matrices. J. Phys. Chem. A 2004, 108, 6982–6989. [Google Scholar] [CrossRef]
- Reva, I.D.; Jarmelo, S.; Lapinski, L.; Fausto, R. First experimental evidence of the third conformer of glycolic acid: Combined matrix isolation, FTIR and theoretical study. Chem. Phys. Lett. 2004, 389, 68–74. [Google Scholar] [CrossRef]
- Halasa, A.; Lapinski, L.; Reva, I.; Rostkowska, H.; Fausto, R.; Nowak, M.J. Near-infrared laser-induced generation of three rare conformers of glycolic acid. J. Phys. Chem. A 2014, 118, 5626–5635. [Google Scholar] [CrossRef]
- Ahokas, J.M.E.; Kosendiak, I.; Krupa, J.; Wierzejewska, M.; Lundell, J. High vibrational overtone excitation-induced conformational isomerization of glycolic acid in solid argon matrix. J. Raman Spectrosc. 2018, 49, 2036–2045. [Google Scholar] [CrossRef]
- Ahokas, J.; Kosendiak, I.; Krupa, J.; Lundell, J.; Wierzejewska, M. FTIR matrix isolation and theoretical studies of glycolic acid dimers. J. Mol. Struct. 2018, 1163, 294–299. [Google Scholar] [CrossRef]
- Ahokas, J.M.E.; Kosendiak, I.; Krupa, J.; Lundell, J.; Wierzejewska, M. Raman spectroscopy of glycolic acid complexes with N2. J. Mol. Struct. 2019, 1183, 367–372. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.G.; Scuseria, E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Head-Gordon, T. Analytic MP2 frequencies without fifth order storage: Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett. 1994, 220, 122–128. [Google Scholar] [CrossRef]
- Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289. [Google Scholar] [CrossRef]
- Sæbø, S.; Almlöf, J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 1989, 154, 83–89. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. Calculation of small molecular interactions by differences of separate total energies—Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 1996, 105, 11024–11031. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll (Version 12.09.23); TK Gristmill Software: Overland Park, KS, USA, 2012; Available online: aim.tkgristmill.com.
- Bader, R.F.W.; Essen, H. The characterization of atomic interactions. J. Chem. Phys. 1984, 80, 1943. [Google Scholar] [CrossRef]
- Grabowski, S.J. What is the covalency of hydrogen bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.V.; Raghavendra, V.; Subramanian, V. Bader’s Theory of Atoms in Molecules (AIM) and its applications to chemical bonding. J. Chem. Sci. 2016, 128, 1527–1536. [Google Scholar] [CrossRef]
- Cerpa, E.; Krapp, A.; Vela, A.; Merino, G. The implications of symmetry of the external potential on bond paths. Chem. Eur. J. 2008, 14, 10232–10234. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.R.; Contreras-Garcia, J.; Piquemal, J.-P.; Miller, B.J.; Kjaergaard, H.G. Are bond critical points really critical for hydrogen bonding? J. Chem. Theor. Comput. 2013, 9, 3263–3266. [Google Scholar] [CrossRef] [PubMed]
- Lundell, J.; Räsänen, M.; Latajka, Z. Matrix isolation FTIR and ab initio study of complexes between formic acid and nitrogen. Chem. Phys. 1994, 189, 245–260. [Google Scholar] [CrossRef]
- Wierzejewska-Hnat, M.; Latajka, Z.; Mielke, Z.; Ratajczak, H. Theoretical and infrared matrix isolation studies of the CF3COOH-N2 system. J. Mol. Struct. 1985, 129, 229–235. [Google Scholar] [CrossRef]
- Michalska, D.; Wysokiński, R. The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory. Chem. Phys. Lett. 2005, 403, 211–217. [Google Scholar] [CrossRef]
- Wysokiński, R.; Michalska, D.; Bieńko, D.C.; Ilakiamani, S.; Sundaraganesan, N.; Ramalingam, K. Density functional study on the molecular structure, infrared and Raman spectra, and vibrational assignment for 4-thiocarbamoylpyridine. J. Mol. Struct. 2006, 791, 70–76. [Google Scholar] [CrossRef]
- Kosendiak, I.; Ahokas, J.M.E.; Krupa, J.; Lundell, J.; Wierzejewska, M. Complexes of glycolic acid with nitrogen isolated in argon matrices. II. Vibrational overtone excitations. Molecules 2019, 24, 3245. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Complex | Intermolecular Parameters | AIM Parameters | ||||
---|---|---|---|---|---|---|
Interatomic Distances | Angle | BCP | ρ (r) | ∇2ρ(r) | ||
H⋯Y | X⋯Y | X–H⋯Y | ||||
SSC1 | 2.257 | 3.226 | 179.0 | H7⋯N10 | 0.014 | 0.053 |
SSC2 | 2.475 | 3.363 | 152.8 | H9⋯N10 | 0.009 | 0.037 |
SSC3 | 3.358 | C1⋯N10 | 0.006 | 0.024 | ||
3.280 | C4⋯N10 | 0.006 | 0.024 | |||
Ring critical point | 0.006 | 0.025 | ||||
GAC1 | 2.262 | 3.230 | 178.1 | H7⋯N10 | 0.014 | 0.053 |
GAC2 | 2.363 | 3.304 | 166.4 | H9⋯N10 | 0.012 | 0.045 |
3.410 | O6⋯N10 | 0.004 | 0.016 | |||
Ring critical point | 0.004 | 0.016 | ||||
GAC3 | 3.249 | O8⋯N10 | 0.006 | 0.022 | ||
3.252 | C4⋯N10 | 0.006 | 0.026 | |||
Ring critical point | 0.005 | 0.025 | ||||
GAC4 | 3.323 | O5⋯N10 | 0.006 | 0.023 | ||
2.971 | 3.684 | 123.1 | H2⋯N10 | 0.005 | 0.017 | |
Ring critical point | 0.005 | 0.018 | ||||
GAC5 | 2.832 | 3.521 | 121.5 | H3⋯N10 | 0.004 | 0.016 |
3.188 | O8⋯N10 | 0.005 | 0.018 | |||
Ring critical point | 0.004 | 0.018 | ||||
AAT1 | 2.459 | 3.212 | 134.2 | H7⋯N10 | 0.010 | 0.040 |
1.950 | 2.584 | 120.7 | H7⋯O8 | 0.027 | 0.117 | |
Ring critical point | 0.025 | 0.143 | ||||
AAT2 | 2.547 | 3.287 | 133.9 | H9⋯N10 | 0.008 | 0.030 |
1.985 | 2.640 | 122.7 | H7⋯O8 | 0.028 | 0.108 | |
Ring critical point | 0.026 | 0.137 | ||||
AAT3 | 1.922 | 2.575 | 122.2 | H7⋯O8 | 0.029 | 0.122 |
3.184 | C4⋯N10 | 0.006 | 0.027 | |||
Ring critical point | 0.026 | 0.151 |
Structure | Interaction Energy | Relative Energy | ||
---|---|---|---|---|
MP2 | B3LYPD3 | MP2 | B3LYPD3 | |
SSC1 | −7.70 | −8.41 | 0.00 | 0.00 |
SSC2 | −4.48 | −5.15 | 3.23 | 3.27 |
SSC3 | −5.40 | −5.77 | 2.35 | 2.63 |
GAC1 | −7.53 | −8.28 | 10.70 | 10.49 |
GAC2 | −5.61 | −6.23 | 12.80 | 12.68 |
GAC3 | −5.02 | −5.31 | 13.28 | 13.46 |
GAC4 | −4.48 | −4.94 | 13.75 | 13.78 |
GAC5 | −4.02 | - | 14.21 | - |
AAT1 | −4.85 | −5.56 | 15.71 | 16.23 |
AAT2 | −9.12 | −9.71 | 12.19 | 12.34 |
AAT3 | −5.40 | −5.73 | 15.08 | 15.91 |
Mode | Band Position | IIR | IRaman | Raman Exp [22] |
---|---|---|---|---|
ν1 | 3781 | 79 | 477 | |
ν2 | 3754 | 302 | 1880 | 3562, 3554, 3545 |
ν3 | 3130 | 7 | 1202 | |
ν4 | 3087 | 25 | 2536 | |
ν5 | 2175 | 1 | 674 | |
ν6 | 1789 | 246 | 739 | 1777, 1775 |
ν7 | 1518 | 12 | 509 | |
ν8 | 1492 | 2 | 106 | |
ν9 | 1372 | 124 | 202 | |
ν10 | 1315 | 33 | 134 | |
ν11 | 1271 | 0 | 355 | |
ν12 | 1190 | 161 | 175 | |
ν13 | 1112 | 226 | 168 | |
ν14 | 1053 | 1 | 13 | |
ν15 | 878 | 28 | 1107 | |
ν16 | 689 | 108 | 16 | |
ν17 | 653 | 18 | 518 | |
ν18 | 540 | 1 | 204 | |
ν19 | 480 | 18 | 528 | |
ν20 | 340 | 77 | 7 | |
ν21 | 287 | 12 | 32 | |
ν22 | 102 | 0 | 1504 | |
ν23 | 92 | 8 | 1787 | |
ν24 | 80 | 5 | 757 | |
ν25 | 79 | 2 | 224 | |
ν26 | 23 | 0 | 387 | |
ν27 | 18 | 1 | 2940 |
MP2/6-311++G(2d,2p) | Experimental Shifts | Assignment | |||||
---|---|---|---|---|---|---|---|
SSC1 | SSC2 | SSC3 * | |||||
Δν | I | Δν | I | Δν | I | Δν | |
−5 | 79 | 3 | 119 | 0 | 32 | −4 | (ν1) νOHA |
−31 | 302 | 1 | 117 | 0 | 140 | −11.5, −14.5, −19.0/−21.0 | (ν2) νOHC |
−5 | 246 | 1 | 274 | −1 | 249 | 2, −3 | (ν6) νC=O |
10 | 124 | −4 | 126 | 1 | 123 | 12, 6 | (ν9) δOHA + δOHC + νC–OC |
15 | 161 | −2 | 126 | 0 | 139 | 14, 13, 8, 5, 3 | (ν12) δOHC + νC–OC +ωCH2 |
4 | 28 | −1 | 30 | 1 | 28 | 6, 4, 2 | (ν15) νC–C + νC–OC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosendiak, I.; Ahokas, J.M.E.; Krupa, J.; Lundell, J.; Wierzejewska, M. Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. I. Structures and Thermal Effects. Molecules 2019, 24, 3262. https://doi.org/10.3390/molecules24183262
Kosendiak I, Ahokas JME, Krupa J, Lundell J, Wierzejewska M. Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. I. Structures and Thermal Effects. Molecules. 2019; 24(18):3262. https://doi.org/10.3390/molecules24183262
Chicago/Turabian StyleKosendiak, Iwona, Jussi M.E. Ahokas, Justyna Krupa, Jan Lundell, and Maria Wierzejewska. 2019. "Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. I. Structures and Thermal Effects" Molecules 24, no. 18: 3262. https://doi.org/10.3390/molecules24183262
APA StyleKosendiak, I., Ahokas, J. M. E., Krupa, J., Lundell, J., & Wierzejewska, M. (2019). Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. I. Structures and Thermal Effects. Molecules, 24(18), 3262. https://doi.org/10.3390/molecules24183262