Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. II. Vibrational Overtone Excitations
Abstract
:1. Introduction
2. Methods
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
3.1. Site-Selective Changes of SSC1
3.2. Photoproducts Formed Upon Vibrational Overtone Excitation
3.3. Structures of the Newly Formed Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Donaldson, D.J.; Tuck, A.F.; Vaida, V. Atmospheric photochemistry via vibrational overtone absorption. Chem. Rev. 2003, 103, 4717–4729. [Google Scholar] [CrossRef] [PubMed]
- Vaida, V. Spectroscopy of photoreactive systems: Implications for atmospheric chemistry. J. Phys. Chem. A 2009, 113, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Vaida, V.; Donaldson, D.J. Red-light initiated atmospheric reactions of vibrationally excited molecules. Phys. Chem. Chem. Phys. 2014, 16, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Reva, I.D.; Jarmelo, S.; Lapinski, L.; Fausto, R. IR-induced photoisomerization of glycolic acid isolated in low-temperature inert matrices. J. Phys. Chem. A 2004, 108, 6982–6989. [Google Scholar] [CrossRef]
- Larsen, M.C.; Vaida, V. Near infrared photochemistry of pyruvic acid in aqueous solution. J. Phys. Chem. A 2012, 116, 5840–5846. [Google Scholar] [CrossRef] [PubMed]
- Halasa, A.; Lapinski, L.; Reva, I.; Rostkowska, H.; Fausto, R.; Nowak, M.J. Near-infrared laser-induced generation of three rare conformers of glycolic acid. J. Phys. Chem. A 2014, 118, 5626–5635. [Google Scholar] [CrossRef]
- Olbert-Majkut, A.; Lundell, J.; Wierzejewska, M. Light-induced opening and closing of the intramolecular hydrogen bond in glyoxylic acid. J. Phys. Chem. A 2014, 118, 350–357. [Google Scholar] [CrossRef]
- Kuş, N.; Fausto, R. Near-infrared and ultraviolet induced isomerization of crotonic acid in N2 and Xe cryomatrices: First observation of two high-energy trans C-O conformers and mechanistic insights. J. Chem. Phys. 2014, 141, 234310. [Google Scholar] [CrossRef]
- Olbert-Majkut, A.; Wierzejewska, M.; Lundell, J. Light-induced, site-selective isomerization of glyoxylic acid in solid xenon. Chem. Phys. Lett. 2014, 616–617, 91–97. [Google Scholar] [CrossRef]
- Araujo-Andrade, C.; Reva, I.; Fausto, R. Tetrazole acetic acid: Tautomers, conformers, and isomerization. J. Chem. Phys. 2014, 140, 064306. [Google Scholar] [CrossRef]
- Reva, I.; Nunes, C.M.; Biczysko, M.; Fausto, R. Conformational switching in pyruvic acid isolated in Ar and N2 matrixes: Spectroscopic analysis, anharmonic simulation, and tunnelling. J. Phys. Chem. A 2015, 119, 2614–2627. [Google Scholar] [CrossRef] [PubMed]
- Ahokas, J.M.E.; Kosendiak, I.; Krupa, J.; Wierzejewska, M.; Lundell, J. High vibrational overtone excitation-induced conformational isomerization of glycolic acid in solid argon matrix. J. Raman Spectrosc. 2018, 49, 2036–2045. [Google Scholar] [CrossRef]
- Halasa, A.; Reva, I.; Lapinski, L.; Nowak, M.J.; Fausto, R. Conformational changes in thiazole-2-carboxylic acid selectively induced by excitation with narrowband near-IR and UV light. J. Phys. Chem. A 2016, 120, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Hollenstein, H.; Schär, R.W.; Schwizgebel, N.; Grassi, G.; Günthard, H.H. A transferable valence force field for polyatomic molecules. A scheme for glycolic acid and methyl glycolate. Spectrochim. Acta A 1983, 39, 193–213. [Google Scholar] [CrossRef]
- Hollenstein, H.; Ha, T.K.; Günthard, H.H. IR induced conversion of rotamers, matrix spectra, ab initio calculation of conformers, assignment and valence force field of trans glycolic acid. J. Mol. Struct. 1986, 146, 289–307. [Google Scholar] [CrossRef]
- Ahokas, J.M.E.; Kosendiak, I.; Krupa, J.; Wierzejewska, M.; Lundell, J. Raman spectroscopy of glycolic acid complexes with N2. J. Mol. Struct. 2019, 1183, 367–372. [Google Scholar] [CrossRef]
- Kosendiak, I.; Ahokas, J.M.E.; Krupa, J.; Lundell, J.; Wierzejewska, M. Complexes of glycolic acid with nitrogen isolated in argon matrices. I. Structures and thermal effects. Molecules 2019, in press. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.G.; Scuseria, E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Head-Gordon, T. Analytic MP2 frequencies without fifth order storage: Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett. 1994, 220, 122–128. [Google Scholar] [CrossRef]
- Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289. [Google Scholar] [CrossRef]
- Sæbø, S.; Almlöf, J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 1989, 154, 83–89. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Boys, S.F.; Bernardi, F. Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 1996, 105, 11024–11031. [Google Scholar] [CrossRef]
- Hallam, H.E. Vibrational Spectroscopy of Trapped Species; John Wiley & Sons: London, UK, 1973. [Google Scholar]
- Biczysko, M.; Krupa, J.; Wierzejewska, M. Theoretical studies of atmospheric molecular complexes interacting with NIR to UV light. Faraday Discuss. 2018, 212, 421–441. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Infrared | Assignment | Raman [16] | ||
---|---|---|---|---|
νOHA a | ΔνOHA | νOHA | ΔνOHA | |
3673.0↓/3661.0 | +3.0/–9.0 | AAT1 | 3672↓ | –3 |
3669.5↓/3661.0 | –0.5/–9.0 | AAT1 | 3669 | –6 |
3667.5↓/3661.0 | –2.5/–9.0 | AAT1 | ||
3664.5↑ | –5.5 | AAT3 | ||
3663.5↑ sh | –6.5 | AAT1 | ||
ca. 3646 b | –2 | GAC1 | ||
3567↓ | ||||
3557.0 | –4.0 | SSC1 | 3562 | –4 |
νOHC | ΔνOHC | νOHC | ΔνOHC | |
3549.5 | –11.5 | SSC1 | 3554 | –12 |
3546.5 | –14.5 | SSC1 | ||
3542.0/3540.0 | –19.0/–21.0 | SSC1 | 3545 | –21 |
3539.0 c | –24.0 | GAC1 | ||
3488.5↑ | +15.5 | AAT1 | 3487↓/3486 | +9/+8 |
3479.0↓/3483.5 | +6.0/+10.5 | AAT1 | 3479↓ | +1 |
3475.5↓/3478.5 | +2.5/+5.5 | AAT1 | 3473 | –5 |
3473.0 | 0 | |||
3469.5↑ | –3.5 | AAT3 |
SSC1 | SSC2 | SSC3 | |||||
νOHA | νOHC | νOHA | νOHC | νOHA | νOHC | ||
MP2 | 6-311++G(2d,2p) | −5(79) | −30(302) | 3(119) | 1(117) | 0(32) | 0(140) |
B3LYPD3 | 6-311++G(2d,2p) | −4(74) | −37(309) | 8(138) | 0(84) | −1(77) | 0(73) |
aug-cc-pVDZ | −5(69) | −37(303) | 9(143) | 0(70) | −1(79) | 0(73) | |
aug-cc-pVTZ | −4(72) | −40(316) | 9(142) | 1(79) | −1(73) | 0(70) | |
aug-cc-pVQZ | −4(73) | −40(314) | 9(145) | 0(78) | 0(71) | 0(73) | |
GAC1 | GAC2 | GAC3 | |||||
νOHA | νOHC | νOHA | νOHC | νOHA | νOHC | ||
MP2 | 6-311++G(2d,2p) | −2(58) | −31(293) | −6(158) | −3(88) | 1(56) | −2(93) |
B3LYPD3 | 6-311++G(2d,2p) | −1(49) | −35(298) | −4(155) | −2(72) | 1(48) | 0(78) |
aug-cc-pVDZ | −1(45) | −35(288) | −4(152) | −2(69) | 1(45) | 0(74) | |
aug-cc-pVTZ | −1(47) | −39(307) | −6(164) | −2(69) | 1(47) | 0(75) | |
aug-cc-pVQZ | −1(48) | −39(305) | −6(165) | −3(69) | 1(47) | 0(76) | |
AAT1 | AAT2 | AAT3 | |||||
νOHA | νOHC | νOHA | νOHC | νOHA | νOHC | ||
MP2 | 6-311++G(2d,2p) | −1(67) | −1(233) | −34(88) | −20(152) | 0(72) | −4(170) |
B3LYPD3 | 6-311++G(2d,2p) | −4(57) | 10(211) | −22(81) | 1(128) | −3(63) | −1(139) |
aug-cc-pVDZ | −4(52) | 12(201) | −19(76) | 1(120) | −2(58) | −1(131) | |
aug-cc-pVTZ | −5(54) | 11(211) | −22(79) | 1(122) | −3(60) | −1(133) | |
aug-cc-pVQZ | −4(55) | 11(212) | −22(79) | 1(122) | −3(61) | 0(133) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosendiak, I.; Ahokas, J.M.E.; Krupa, J.; Lundell, J.; Wierzejewska, M. Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. II. Vibrational Overtone Excitations. Molecules 2019, 24, 3245. https://doi.org/10.3390/molecules24183245
Kosendiak I, Ahokas JME, Krupa J, Lundell J, Wierzejewska M. Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. II. Vibrational Overtone Excitations. Molecules. 2019; 24(18):3245. https://doi.org/10.3390/molecules24183245
Chicago/Turabian StyleKosendiak, Iwona, Jussi M.E. Ahokas, Justyna Krupa, Jan Lundell, and Maria Wierzejewska. 2019. "Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. II. Vibrational Overtone Excitations" Molecules 24, no. 18: 3245. https://doi.org/10.3390/molecules24183245
APA StyleKosendiak, I., Ahokas, J. M. E., Krupa, J., Lundell, J., & Wierzejewska, M. (2019). Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. II. Vibrational Overtone Excitations. Molecules, 24(18), 3245. https://doi.org/10.3390/molecules24183245