Tyrosinase Inhibition Antioxidant Effect and Cytotoxicity Studies of the Extracts of Cudrania tricuspidata Fruit Standardized in Chlorogenic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic Conditions for Extract of C. tricuspidata Fruit
2.2. Method Validation
2.2.1. Linearity, Limit of Detection (LOD), and Limit of Quantification (LOQ)
2.2.2. Precision and Accuracy
2.2.3. Repeatability
2.3. Contents of Marker Compounds from C. tricuspidata Fruit Extracts
2.4. Cell Viability and Tyrosinase Inhibition of C. tricuspidata Fruit Extracts
3. Experimental Section
3.1. Plant Material and Preparation of the Extract
3.2. Instrumentation and Chromatographic Conditions
3.3. Preparation of Standards and Sample Solutions
3.4. Method Validation
3.5. Analysis of the Extract from C. tricuspidata Fruit
3.6. Cell Viability
3.7. Tyrosinase Inhibitory Assay
3.8. Determination of Total Phenolic Content
3.9. Determination of Total Flavonoids
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, S.H.; Jung, E.J.; Lim, D.G.; Oyungerel, B.; Lim, K.I.; Her, E.; Choi, W.S.; Jun, M.H.; Choi, K.D.; Han, D.J. Anti-inflammatory action of Cudrania tricuspidata on spleen cell and T lymphocyte proliferation. J. Pharm. Pharmacol. 2008, 60, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Hiep, N.T.; Kwon, J.; Kim, D.-W.; Hwang, B.Y.; Lee, H.-J.; Mar, W.; Lee, D. Isoflavones with neuroprotective activities from fruits of Cudrania tricuspidata. Phytochemistry 2015, 111, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ha, H.; Lee, J.K.; Seo, C.s.; Lee, N.h.; Jung, D.Y.; Park, S.J.; Shin, H.K. The fruits of Cudrania tricuspidata suppress development of atopic dermatitis in NC/Nga mice. Phytother. Res. 2012, 26, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Han, X.H.; Hong, S.S.; Jin, Q.; Li, D.; Kim, H.-K.; Lee, J.; Kwon, S.H.; Lee, D.; Lee, C.-K.; Lee, M.K. Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata. J. Nat. Prod. 2008, 72, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Kim, S.B.; Liu, Q.; Do, S.-G.; Hwang, B.Y.; Lee, M.K. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLoS ONE 2017, 12, e0172069. [Google Scholar] [CrossRef] [PubMed]
- Han, X.H.; Hong, S.S.; Hwang, J.S.; Jeong, S.H.; Hwang, J.H.; Lee, M.H.; Lee, M.K.; Lee, D.; Ro, J.S.; Hwang, B.Y. Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch. Pharm. Res. 2005, 28, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Choi, K.-M.; Liu, Q.; Kim, S.B.; Ji, H.-J.; Kim, M.; Shin, S.-K.; Do, S.-G.; Shin, E.; Jung, G. Anti-obesity effect of 6, 8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice. Nutrients 2015, 7, 10480–10490. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.-T.; Yue, S.-J.; Fan, Y.-C.; Wu, J.-S.; Yan, D.; Guan, H.-S.; Wang, C.-Y. Cudrania tricuspidata: An updated review on ethnomedicine, phytochemistry and pharmacology. RSC Adv. 2017, 7, 31807–31832. [Google Scholar] [CrossRef]
- Lee, B.; Lee, J.; Lee, S.-T.; Suk, T.; Lee, W.; Jeong, T.-S.; Hun Park, K. Antioxidant and Cytotoxic Activities of Xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. Lett. 2005, 15, 5548–5552. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.-H.; Nam Choi, G.; Hye Kim, J.; Hyun Kwak, J.; Rok Jeong, H.; Kim, D.-O.; Heo, h.j. Protective Effects of Aqueous Extract from Cudrania tricuspidata on Oxidative Stress-induced Neurotoxicity. Food Sci. Biotechnol. 2010, 19, 1113–1117. [Google Scholar] [CrossRef]
- Lee, T.; Kwon, J.; Lee, D.; Mar, W. Effects of Cudrania tricuspidata Fruit Extract and Its Active Compound, 5, 7, 3′, 4′-Tetrahydroxy-6, 8-diprenylisoflavone, on the High-Affinity IgE Receptor-Mediated Activation of Syk in Mast Cells. J. Agric. Food Chem. 2015, 63, 5459–5467. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Cao, C.; Sun, W.; Chen, Z.; Li, X.; Nahar, L.; Sarker, S.D.; Georgiev, M.I.; Bai, W. Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) in vitro and in vivo. Food. Chem. Toxicol. 2019, 126, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-R.; Habasi, M.; Xie, L.-Z.; Akber Aisa, H. Effect of Chlorogenic Acid on Melanogenesis of B16 Melanoma Cells. Molecules 2014, 19, 12940–12948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blazquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Petrillo, A.; Gonzalez-Paramas, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Azlan, A.; Ismail, A.; Hashim, P.; Abd Gani, S.S.; Zainudin, B.H.; Abdullah, N.A. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement. Altern. Med. 2014, 14, 381. [Google Scholar]
- Kim, S.B.; Jo, Y.H.; Liu, Q.; Ahn, J.H.; Hong, I.P.; Han, S.M.; Hwang, B.Y.; Lee, M.K. Optimization of Extraction Condition of Bee Pollen Using Response Surface Methodology: Correlation between Anti-Melanogenesis, Antioxidant Activity, and Phenolic Content. Molecules 2015, 20, 19764–19774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Park, D.H.; Song, S.H.; Yoon, I.S.; Cho, S.S. Development and Validation of a HPLC-UV Method for Extraction Optimization and Biological Evaluation of Hot-Water and Ethanolic Extracts of Dendropanax morbifera Leaves. Molecules 2018, 23, 650. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.N.; Seo, J.H.; Lee, M.H.; Kim, C.; Kim, E.; Yoon, G.; Cho, S.S.; Cho, Y.S.; Choi, H.W.; Shim, J.H.; et al. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J. Cell. Biochem. 2018, 119, 10118–10130. [Google Scholar] [CrossRef] [PubMed]
- Mirmortazavi, S.S.; Farvandi, M.; Ghafouri, H.; Mohammadi, A.; Shourian, M. Evaluation of novel pyrimidine derivatives as a new class of mushroom tyrosinase inhibitor. Drug. Des. Dev. Ther. 2019, 13, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Constituent | Activity | Contents | Effective Dose (mg/kg/day)(route/animal) | Ref. |
---|---|---|---|---|
6,8-diprenylgenistein | Anti-obesity | Single compound | 30 (oral/mouse) | [7] |
Cudraisoflavones etc | Neuroprotective | *N.D | N.D | [2] |
Genistein etc | Lipase inhibition | N.D | N.D | [5] |
5,7,3′,4′-Tetrahydroxy-6,8-diprenylisoflavone | Antiallergy | N.D | N.D | [11] |
Water extract | Dermatitis | Rutin was identified | 60 (oral/mouse) | [3] |
Gancaonin A etc | Monoamine oxidase inhibition | N.D | N.D | [6] |
Water and etnaolic extract | Tyrosinase inhibition | Chlorogenic acid | N.D | This study |
Scandenolone | Anti-cancer | Single compound | 5 and 7.5 (intravenous/mouse) | [12] |
Analyte | Retention Time (min) | R2 | Linear Range (μg/mL) | LOQ (μg/mL) | LOD (μg/mL) |
---|---|---|---|---|---|
Chlorogenic acid | 4.7 | 0.998 | 3.125–50 | 2.11 | 0.7 |
Analyte | Conc (μg/mL) | Intra-Day (n = 3) | Inter-Day (n = 3) | ||
---|---|---|---|---|---|
RSD (%) a | Accuracy (%) | RSD (%) | Accuracy (%) | ||
Chlorogenic acid | 6.25 12.5 25 | 2.65 7.86 2.59 | 105.29 105.32 104.50 | 2.74 5.94 3.17 | 104.04 107.78 105.91 |
Analyte | Added (μg/mL) | Recovery (%) (Mean ± SD) | RSD (%) a |
---|---|---|---|
Cholorogenic acid | 6.25 | 103.39 ± 0.35 | 0.4 |
12.5 | 96.79 ± 0.96 | 1.08 | |
25 | 98.59 ± 1.20 | 1.26 |
Extract | Total Flavonoid (Ascorbic Acid eq. μg/100 μg Extract) | Total Phenolic Content (Gallic Acid eq. mg/g) |
---|---|---|
Hot water | 7.9 | 31.9 ± 1.4 |
20% EtOH Ex | 14.0 | 36.0 ± 3.0 |
40% EtOH Ex | 10.8 | 29.9 ± 1.8 |
60% EtOH Ex | 11.2 | 33.9 ± 2.1 |
80% EtOH Ex | 19.5 | 35.9 ± 2.2 |
100% EtOH Ex | 26.0 | 40.6 ± 2.7 |
Parameters | Conditions | ||
---|---|---|---|
Instruments and Column | Alliance 2695 HPLC system (Waters, Millford, MA, USA) Zorbax extended-C18 (C18, 4.6 mm × 150 mm, 5 µm) | ||
Flow rate | 0.8 mL/min | ||
Injection volumn | 10 μL | ||
UV detection | 330 nm | ||
Run time | 30 min | ||
Gradient | Time (min) | A (%) | B (%) |
0 | 10 | 90 | |
7 | 10 | 90 | |
8 | 20 | 80 | |
20 | 25 | 75 | |
21 | 100 | 0 | |
25 | 10 | 90 | |
30 | 10 | 90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.-N.; Park, D.-H.; Park, J.-Y.; Song, S.-Y.; Lee, S.-H.; Yoon, G.; Moon, H.-S.; Oh, D.-S.; Rhee, S.-H.; Im, E.-O.; et al. Tyrosinase Inhibition Antioxidant Effect and Cytotoxicity Studies of the Extracts of Cudrania tricuspidata Fruit Standardized in Chlorogenic Acid. Molecules 2019, 24, 3266. https://doi.org/10.3390/molecules24183266
Oh H-N, Park D-H, Park J-Y, Song S-Y, Lee S-H, Yoon G, Moon H-S, Oh D-S, Rhee S-H, Im E-O, et al. Tyrosinase Inhibition Antioxidant Effect and Cytotoxicity Studies of the Extracts of Cudrania tricuspidata Fruit Standardized in Chlorogenic Acid. Molecules. 2019; 24(18):3266. https://doi.org/10.3390/molecules24183266
Chicago/Turabian StyleOh, Ha-Na, Dae-Hun Park, Ji-Yeon Park, Seung-Yub Song, Sung-Ho Lee, Goo Yoon, Hong-Seop Moon, Deuk-Sil Oh, Sang-Hoon Rhee, Eun-Ok Im, and et al. 2019. "Tyrosinase Inhibition Antioxidant Effect and Cytotoxicity Studies of the Extracts of Cudrania tricuspidata Fruit Standardized in Chlorogenic Acid" Molecules 24, no. 18: 3266. https://doi.org/10.3390/molecules24183266
APA StyleOh, H. -N., Park, D. -H., Park, J. -Y., Song, S. -Y., Lee, S. -H., Yoon, G., Moon, H. -S., Oh, D. -S., Rhee, S. -H., Im, E. -O., Yoon, I. -S., Shim, J. -H., & Cho, S. -S. (2019). Tyrosinase Inhibition Antioxidant Effect and Cytotoxicity Studies of the Extracts of Cudrania tricuspidata Fruit Standardized in Chlorogenic Acid. Molecules, 24(18), 3266. https://doi.org/10.3390/molecules24183266