Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. ECD Calculations
3.5. Characterization
3.6. MTS Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.W.; Li, J.; Robson, N.K.B.; Stevens, P.F. Clusiaceae. In Flora of China; Wu, Z.Y., Raven, P., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2007; Volume 13, pp. 1–34. [Google Scholar]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. St John′s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2010, 53, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Nahrstedt, A.; Butterweck, V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry 1997, 30 (Suppl. 2), 129–134. [Google Scholar] [CrossRef] [PubMed]
- Butterweck, V.; Jürgenliemk, G.; Nahrstedt, A.; Winterhoff, H. Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med. 2000, 66, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; Grossman, R.B.; Xu, G. Research progress of polycyclic polyprenylated acylphloroglucinols. Chem. Rev. 2018, 118, 3508–3558. [Google Scholar] [CrossRef]
- Bonaterra, G.A.; Schwendler, A.; Huther, J.; Schwarzbach, H.; Schwarz, A.; Kolb, C.; Abdel-Aziz, H.; Kinscherf, R. Neurotrophic, cytoprotective, and anti-inflammatory effects of St. John′s wort extract on differentiated mouse hippocampal HT-22 neurons. Front. Pharmacol. 2018, 8, 13. [Google Scholar] [CrossRef]
- Chatterjee, S.S.; Bhattacharya, S.K.; Wonnemann, M.; Singer, A.; Müller, W.E. Hyperforin as a possible antidepressant component of Hypericum extracts. Life Sci. 1997, 63, 499–510. [Google Scholar] [CrossRef]
- Wu, R.R.; Le, Z.J.; Wang, Z.Z.; Tian, S.Y.; Xue, Y.B.; Chen, Y.; Hu, L.Z.; Zhang, Y.H. Hyperjaponol H, A new bioactive filicinic acid-based meroterpenoid from Hypericum japonicum Thunb. ex Murray. Molecules 2018, 23, 683. [Google Scholar] [CrossRef]
- Zou, Y.; Lu, Y.; Wei, D. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 2004, 52, 5032–5039. [Google Scholar] [CrossRef]
- Sanna, C.; Scognamiglio, M.; Fiorentino, A.; Corona, A.; Graziani, V.; Caredda, A.; Cortis, P.; Montisci, M.; Ceresola, E.R.; Canducci, F.; et al. Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication. PLoS ONE 2018, 13, e0195168. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Engrin, A.; Kennelly, J.E.; Long, C.L. Chemical constituents of Hypericum stellatum and their antioxidant bioactivities. China J. Chin. Mater. Med. 2018, 43, 3701–3707. [Google Scholar]
- Gunatilaka, A.L.; De Silva, A.J.; Sotheeswaran, S. Minor xanthones of Hypericum mysorense. Phytochemistry 1982, 21, 1751–1753. [Google Scholar] [CrossRef]
- Ungwitayatorn, J.; Pickert, M.; Frahm, A.W. Quantitative structure-activity relationship (QSAR) study of polyhydroxyxanthones. Pharm. Acta. Helv. 1997, 72, 23–29. [Google Scholar] [CrossRef]
- Zhou, Z.B.; Zhang, Y.M.; Luo, J.G.; Kong, L.Y. Cytotoxic polycyclic polyprenylated acylphloroglucinol derivatives and xanthones from Hypericum attenuatum. Phytochem. Lett. 2016, 15, 215–219. [Google Scholar] [CrossRef]
- Pinheiro, T.R.; Filho, V.C.; Santos, A.R.S.; Calixto, J.B.; Monache, F.D.; Pizzolatti, M.G.; Yunes, R.A. Three xanthones from polygala cyparissias. Phytochemistry 1998, 48, 725–728. [Google Scholar] [CrossRef]
- Li, J.; Deng, Y.; Yuan, C.H.; Pan, L.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Antioxidant and quinone reductase-inducing constituents of black chokeberry (Aronia melanocarpa) fruits. J. Agric. Food Chem. 2012, 60, 11551–11559. [Google Scholar] [CrossRef]
- Ishiguro, K.; Nagata, S.; Fukumoto, H.; Yamaki, M.; Isoi, K.; Oyama, Y. An isopentenylated flavonol from Hypericum japonicum. Phytochemistry 1993, 32, 1583–1585. [Google Scholar] [CrossRef]
- Rath, G.; Potterat, O.; Mavi, S.; Hostettmann, K. Xanthones from Hypericum roeperanum. Phytochemistry 1996, 43, 513–520. [Google Scholar] [CrossRef]
- Zhou, G.Y.; An, J.; Han, J.; Zhang, Y.L.; Wang, G.C.; Hao, X.Y.; Bian, Z.Q. Isojacareubin from the Chinese herb Hypericum japonicum: Potent antibacterial and synergistic effects on clinical methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Mol. Sci. 2012, 13, 8210–8218. [Google Scholar]
- Wu, Q.L.; Wang, S.P.; Du, L.J.; Yang, J.S.; Xiao, P.G. Xanthones from Hypericum japonicum and H. henryi. Phytochemistry 1998, 49, 1395–1402. [Google Scholar] [CrossRef]
- Xia, Z.X.; Zhang, H.; Xu, D.Q.; Lao, Y.Z.; Fu, W.W.; Tan, H.S.; Cao, P.; Yang, L.; Xu, H.X. Xanthones from the leaves of Garcinia cowa induce cell cycle arrest, apoptosis, and autophagy in cancer cells. Molecules 2015, 20, 11387–11399. [Google Scholar] [CrossRef]
- Xia, Z.X.; Zhang, D.D.; Liang, S.; Lao, Y.Z.; Zhang, H.; Tan, H.S.; Chen, S.L.; Wang, X.H.; Xu, H.X. Bioassay-guided isolation of prenylated xanthones and polycyclic acylphloroglucinols from the leaves of Garcinia nujiangensis. J. Nat. Prod. 2012, 75, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.Y.; Zheng, C.; Liu, Y.X.; Qu, L.; Yu, H.Y.; Han, L.F.; Zhang, Y.; Wang, T. Chemical and biological research on herbal medicines rich in xanthones. Molecules 2017, 22, 1698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Yang, J.; Liao, Y.; Yang, X.Y.; Ma, J.Z.; Xiao, Q.L.; Yang, L.X.; Xu, G. Hyperuralones A and B, New acylphloroglucinol derivatives with intricately caged cores from Hypericum uralum. Org. Lett. 2014, 16, 4912–4915. [Google Scholar] [CrossRef]
- Xu, W.J.; Li, R.J.; Quasie, O.; Yang, M.H.; Kong, L.Y.; Luo, J. Polyprenylated tetraoxygenated xanthones from the roots of Hypericum monogynum and their neuroprotective activities. J. Nat. Prod. 2016, 79, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Tala, M.F.; Talontsi, F.M.; Zeng, G.Z.; Wabo, H.K.; Tan, N.H.; Spiteller, M.; Tane, P. Antimicrobial and cytotoxic constituents from native Cameroonian medicinal plant Hypericum riparium. Fitoterapia 2015, 102, 149–155. [Google Scholar] [CrossRef]
- Ryu, H.W.; Cho, J.K.; Curtislong, M.J.; Yuk, H.J.; Kim, Y.S.; Jung, S.; Kim, Y.S.; Lee, B.W.; Park, K.H. α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry 2011, 72, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Zhan, X.K.; Yang, L.; Cui, C.X.; Wang, J.W. Phase II a trial to treat advanced malignant tumor using gambogic acid. In Proceedings of the 3rd National Symposium on Medical Oncology, Beijing, China, 23 July 2009. [Google Scholar]
- Yuan, X.; Chen, H.; Li, X.; Dai, M.; Zeng, H.W.; Shan, L.; Sun, Q.Y.; Zhang, W.D. Inhibition of protein kinase C by isojacareubin suppresses hepatocellular carcinoma metastasis and induces apoptosis in vitro and in vivo. Sci. Rep. 2015, 5, 12889. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.F.; Feng, X.; Su, G.Z.; Mu, Z.J.; Zhang, H.X.G.; Zhao, Y.N.; Jiao, S.G.; Cao, L.; Chen, S.; Tu, P.F.; et al. Bioactive sesquiterpenoids from the peeled stems of Syringa pinnatifolia. J. Nat. Prod. 2018, 81, 1711–1720. [Google Scholar] [CrossRef]
- Zhu, H.C.; Chen, C.M.; Yang, J.; Li, X.N.; Liu, J.J.; Sun, B.; Huang, S.X.; Li, D.Y.; Yao, G.M.; Luo, Z.W.; et al. Bioactive acylphloroglucinols with adamantyl skeleton from Hypericum sampsonii. Org. Lett. 2014, 16, 6322–6325. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938, 3, 493–497. [Google Scholar] [CrossRef]
Sample Availability: Samples of compounds 1–10 are available from the authors. |
Position | Hypxanthone A | Hypxanthone B | ||
---|---|---|---|---|
δC | δH | δC | δH | |
1 | 162.6 | 161.9 | ||
2 | 98.3 | 6.22, s | 99.2 | 6.14, s |
3 | 164.4 | 162.8 | ||
4 | 107.7 | 102.6 | ||
5 | 133.4 | 133.9 | ||
6 | 148.4 | 148.0 | ||
7 | 113.4 | 6.89, d, 8.4 | 113.8 | 6.90, d, 8.4 |
8 | 117.5 | 7.85, d, 8.4 | 117.7 | 7.60, d, 8.4 |
9 | 182.4 | 182.1 | ||
4a | 153.2 | 153.5 | ||
8a | 103.2 | 103.8 | ||
9a | 114.8 | 115.0 | ||
10a | 156.3 | 156.0 | ||
1′ | 22.0 | 3.63, s | 25.4 | 2.90, dd (11.4, 16.2) |
2′ | 125.0 | 5.63, t, 6.0 | 45.7 | 2.50, m |
3′ | 135.9 | 77.3 | 4.80, t, 9.0 | |
4′ | 69.1 | 3.91, s | 124.2 | 5.27, d, 9.0 |
5′ | 14.0 | 1.92, s | 140.2 | |
6′ | 25.9 | 1.80, s | ||
7′ | 18.6 | 1.80, s | ||
8′ | 146.4 | |||
9′ | 113.7 | 4.92, s | ||
10′ | 20.6 | 1.80, s |
Compds | IC50 ± SD (μM) | |||||
---|---|---|---|---|---|---|
SMMC-7721 | Huh-7 | HepG2 | SK-HEP-1 | PLC/PRF/5 | LO2 | |
1 | >40 | >40 | 10.19 ± 0.12 | >40 | >40 | 14.47 ± 0.95 |
2 | 15.20 ± 0.27 | >40 | >40 | >40 | >40 | >40 |
4 | >40 | >40 | 22.60 ± 1.43 | >40 | >40 | >40 |
6 | 1.41 ± 0.03 | 9.09 ± 0.38 | 2.40 ± 0.02 | 9.20 ± 0.21 | 11.83 ± 0.56 | 2.03 ± 0.04 |
7 | 28.18 ± 0.89 | >40 | >40 | 37.09 ± 0.97 | >40 | 12.09 ± 0.14 |
8 | 27.56 ± 0.68 | >40 | >40 | >40 | >40 | >40 |
9 | 8.26 ± 0.57 | 25.77 ± 2.04 | 11.93 ± 0.10 | >40 | 30.76 ± 0.38 | >40 |
10 | 6.27 ± 0.16 | 16.65 ± 0.24 | 21.33 ± 0.16 | 31.11 ± 2.67 | 24.89 ± 0.46 | 12.21 ± 0.25 |
Cisplatin a | 4.47 ± 0.27 | 16.00 ± 0.95 | 10.29 ± 0.50 | 20.62 ± 1.03 | 10.66 ± 0.80 | 13.93 ±0.87 |
Taxol a | 0.18 ± 0.03 | 0.11 ± 0.011 | <0.01 | <0.01 | <0.01 | <0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Zhang, R.; Zhang, C.; Li, X.; Negrin, A.; Yuan, C.; Kennelly, E.J.; Long, C. Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China. Molecules 2019, 24, 3568. https://doi.org/10.3390/molecules24193568
Ji Y, Zhang R, Zhang C, Li X, Negrin A, Yuan C, Kennelly EJ, Long C. Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China. Molecules. 2019; 24(19):3568. https://doi.org/10.3390/molecules24193568
Chicago/Turabian StyleJi, Yuanyuan, Ruifei Zhang, Chen Zhang, Xingyu Li, Adam Negrin, Chaonan Yuan, Edward J. Kennelly, and Chunlin Long. 2019. "Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China" Molecules 24, no. 19: 3568. https://doi.org/10.3390/molecules24193568
APA StyleJi, Y., Zhang, R., Zhang, C., Li, X., Negrin, A., Yuan, C., Kennelly, E. J., & Long, C. (2019). Cytotoxic Xanthones from Hypericum stellatum, an Ethnomedicine in Southwest China. Molecules, 24(19), 3568. https://doi.org/10.3390/molecules24193568