Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals
Abstract
:1. Introduction
2. Strained Promoted Copper-Free Click Reaction for Synthesis of Radiolabeled Molecules
In Vitro Radiolabeling of Biomolecules
3. Inverse-Electron-Demand Diels–Alder Reaction for Synthesis of Radiolabeled Molecules
3.1. In Vitro Radiolabeling of Biomolecules
3.2. In Vivo Pre-Targeted Imaging and Therapy
4. Other Click Reactions Based on Aromatic Prosthetic Groups
4.1. Condensation/Addition Reactions Using Aromatic Compounds
4.2. Miscellaneous
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CBT | 2-cyanobenzothiazole |
CuAAC | copper(I)-catalyzed azide-alkyne [3+2] cycloaddition reaction |
DBCO | dibenzocyclooctyne |
DFO | deferoxamine |
DMF | N,N-dimethylformamide |
DMSO | dimethyl sulfoxide |
DOTA | 1,4,7,10-tetraazacyclododecane-tetraacetic acid |
DTPA | diethylenetriaminepentaacetic acid |
FH | feraheme |
HPLC | high-performance liquid chromatography |
HAS | human serum albumin |
ICAM-1 | intercellular adhesion molecule |
IEDDA | inverse-electron-demand Diels–Alder reaction |
MSTP | (4-(5-methane-sulfonyl-[1,2,3,4]tetrazole-1-yl)-phenol) |
NOTA | 1,4,7-triazacyclononane-1,4,7-triacetic acid |
ODIBO | oxa-dibenzocyclooctyne |
PBS | phosphate-buffered saline |
PECAM-1 | platelet-endothelial cell adhesion molecule |
PET | positron emission tomography |
PIC | polyisocyanopeptide |
RCY | radiochemical yield |
SPAAC | strain-promoted azide-alkyne cycloaddition reaction |
SPECT | single-photon emission computed tomography |
TCO | trans-cyclooctene |
References
- Schulze, B.; Schubert, U.S. Beyond click chemistry–supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 2014, 43, 2522–2571. [Google Scholar] [CrossRef] [PubMed]
- Jewett, J.C.; Bertozzi, C.R. Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org. Lett. 2011, 13, 5937–5939. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Li, Y. Application of “click” chemistry to the construction of supramolecular functional systems. Chem. Asian J. 2014, 3, 582–602. [Google Scholar] [CrossRef]
- McKay, C.S.; Finn, M.G. Click chemistry in complex mixtures: Bioorthogonal bioconjugation. Chem. Biol. 2014, 21, 1075–1101. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Flood, A.H. Click chemistry generates privileged CH hydrogen-bonding triazoles: The latest addition to anion supramolecular chemistry. Chem. Soc. Rev. 2010, 39, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Aucagne, V.; Leigh, D.A. Chemoselective formation of successive triazole linkages in One Pot: “Click− Click” chemistry. Org. Lett. 2006, 8, 4505–4507. [Google Scholar] [CrossRef]
- Ganesh, V.; Sudhir, V.S.; Kundu, T.; Chandrasekaran, S. 10 Years of Click Chemistry: Synthesis and Applications of Ferrocene-Derived Triazoles. Chem. Asian J. 2011, 6, 2670–2694. [Google Scholar] [CrossRef] [Green Version]
- Becer, C.R.; Hoogenboom, R.; Schubert, U.S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 4900–4908. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1, 2, 3-triazoles as pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules 2016, 21, 1393. [Google Scholar] [CrossRef]
- Kappe, C.O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. Chem. Soc. Rev. 2010, 39, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Mamidyala, S.K.; Finn, M.G. In situ click chemistry: Probing the binding landscapes of biological molecules. Chem. Soc. Rev. 2010, 39, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Van Steenis, D.J.V.; David, O.R.; van Strijdonck, G.P.; van Maarseveen, J.H.; Reek, J.N. Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. Chem. Commun. 2005, 34, 4333–4335. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Zimmerman, S.C. Orthogonality in organic, polymer, and supramolecular chemistry: From Merrifield to click chemistry. Chem. Commun. 2013, 49, 1679–1695. [Google Scholar] [CrossRef]
- Van Dijk, M.; Rijkers, D.T.; Liskamp, R.M.; van Nostrum, C.F.; Hennink, W.E. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem. 2009, 20, 2001–2016. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev. 2007, 36, 1249–1262. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, A.; Pérez-Baena, I.; Pomposo, J. Advances in click chemistry for single-chain nanoparticle construction. Molecules 2013, 18, 3339–3355. [Google Scholar] [CrossRef] [PubMed]
- Lummerstorfer, T.; Hoffmann, H. Click chemistry on surfaces: 1, 3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J. Phys. Chem. B 2004, 108, 3963–3966. [Google Scholar] [CrossRef]
- Devadoss, A.; Chidsey, C.E. Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by “click” chemistry. J. Am. Chem. Soc. 2007, 129, 5370–5371. [Google Scholar] [CrossRef]
- Schlossbauer, A.; Schaffert, D.; Kecht, J.; Wagner, E.; Bein, T. Click chemistry for high-density biofunctionalization of mesoporous silica. J. Am. Chem. Soc. 2008, 130, 12558–12559. [Google Scholar] [CrossRef]
- Li, N.; Binder, W.H. Click-chemistry for nanoparticle-modification. J. Mater. Chem. 2011, 21, 16717–16734. [Google Scholar] [CrossRef]
- Xi, W.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click chemistry in materials science. Adv. Funct. Mater. 2014, 24, 2572–2590. [Google Scholar] [CrossRef]
- Tasdelen, M.A. Diels–Alder “click” reactions: Recent applications in polymer and material science. Polym. Chem. 2011, 2, 2133–2145. [Google Scholar] [CrossRef]
- Nandivada, H.; Jiang, X.; Lahann, J. Click chemistry: Versatility and control in the hands of materials scientists. Adv. Mater. 2007, 19, 2197–2208. [Google Scholar] [CrossRef]
- Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 2013, 113, 4905–4979. [Google Scholar] [CrossRef]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Whiting, M.; Muldoon, J.; Lin, Y.C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; et al. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. 2006, 45, 1435–1439. [Google Scholar] [CrossRef]
- Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G.C.; Sorba, G.; Genazzani, A.A. Rapid synthesis of triazole-modified resveratrol analogues via click chemistry. J. Med. Chem. 2006, 49, 467–470. [Google Scholar] [CrossRef]
- Kamal, A.; Shankaraiah, N.; Reddy, C.R.; Prabhakar, S.; Markandeya, N.; Srivastava, H.K.; Sastry, G.N. Synthesis of bis-1,2,3-triazolo-bridged unsymmetrical pyrrolobenzodiazepine trimers via ‘click’ chemistry and their DNA-binding studies. Tetrahedron 2010, 66, 5498–5506. [Google Scholar] [CrossRef]
- De Geest, B.G.; Van Camp, W.; Du Prez, F.E.; De Smedt, S.C.; Demeester, J.; Hennink, W.E. Degradable multilayer films and hollow capsules via a ‘click’ strategy. Macromol. Rapid Commun. 2008, 29, 1111–1118. [Google Scholar] [CrossRef]
- Xu, X.D.; Chen, C.S.; Lu, B.; Wang, Z.C.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Modular synthesis of thermosensitive P (NIPAAm-co-HEMA)/β-CD based hydrogels via click chemistry. Macromol. Rapid Commun. 2009, 30, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Moorhouse, A.D.; Santos, A.M.; Gunaratnam, M.; Moore, M.; Neidle, S.; Moses, J.E. Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry. J. Am. Chem. Soc. 2006, 128, 15972–15973. [Google Scholar] [CrossRef] [PubMed]
- De Geest, B.G.; Van Camp, W.; Du Prez, F.E.; De Smedt, S.C.; Demeester, J.; Hennink, W.E. Biodegradable microcapsules designed via ‘click’ chemistry. Chem. Commun. 2008, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Lallana, E.; Fernandez-Megia, E.; Riguera, R. Surpassing the use of copper in the click functionalization of polymeric nanostructures: A strain-promoted approach. J. Am. Chem. Soc. 2009, 131, 5748–5750. [Google Scholar] [CrossRef]
- Schieferstein, H.; Betzel, T.; Fischer, C.R.; Ross, T.L. 18F-click labeling and preclinical evaluation of a new 18 F-folate for PET imaging. EJNMMI Res. 2013, 3, 68. [Google Scholar] [CrossRef] [PubMed]
- Notni, J.; Šimeček, J.; Hermann, P.; Wester, H.J. TRAP, a Powerful and Versatile Framework for Gallium-68 Radiopharmaceuticals. Chem. Asian J. 2011, 17, 14718–14722. [Google Scholar] [CrossRef]
- Pretze, M.; Mamat, C. Automated preparation of [18F]AFP and [18F]BFP: Two novel bifunctional 18F-labeling building blocks for Huisgen-click. J. Fluorine Chem. 2013, 150, 25–35. [Google Scholar] [CrossRef]
- Roberts, M.P.; Pham, T.Q.; Doan, J.; Jiang, C.D.; Hambley, T.W.; Greguric, I.; Fraser, B.H. Radiosynthesis and ‘click’ conjugation of ethynyl-4-[18F]fluorobenzene - an improved [18F]synthon for indirect radiolabeling. J. Label. Compd. Radiopharm. 2015, 58, 473–478. [Google Scholar] [CrossRef]
- Mindt, T.L.; Müller, C.; Melis, M.; de Jong, M.; Schibli, R. “Click-to-chelate”: In vitro and in vivo comparison of a 99mTc(CO)3-labeled N(τ)-histidine folate derivative with its isostructural, clicked 1,2,3-triazole analogue. Bioconjugate Chem. 2008, 19, 1689–1695. [Google Scholar] [CrossRef]
- Zeng, D.; Lee, N.S.; Liu, Y.; Zhou, D.; Dence, C.S.; Wooley, K.L.; Katzenellenbogen, J.A.; Welch, M.J. 64Cu Core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 2012, 6, 5209–5219. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Lozada, J.; Schaffer, P.; Adam, M.J.; Ruth, T.J.; Perrin, D.M. Stoichiometric Leverage: Rapid 18F-Aryltrifluoroborate Radiosynthesis at High Specific Activity for Click Conjugation. Angew. Chem. Int. Ed. 2013, 52, 2303–2307. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.P.; Podgorski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry. Chem. Mater. 2013, 26, 724–744. [Google Scholar] [CrossRef]
- Sweeney, J.B. Aziridines: Epoxides’ ugly cousins? Chem. Soc. Rev. 2002, 31, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Crisalli, P.; Kool, E.T. Water-soluble organocatalysts for hydrazone and oxime formation. J. Org. Chem. 2013, 78, 1184–1189. [Google Scholar] [CrossRef]
- Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper (I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Xue, Y.; Qu, L.; Choi, H.J.; Baek, J.B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892. [Google Scholar] [CrossRef]
- Jewett, J.C.; Bertozzi, C.R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39, 1272–1279. [Google Scholar] [CrossRef]
- Juhl, K.; Jørgensen, K.A. The First Organocatalytic Enantioselective Inverse-Electron-Demand Hetero-Diels–Alder Reaction. Angew. Chem. Int. Ed. 2003, 42, 1498–1501. [Google Scholar] [CrossRef]
- Li, Z.; Conti, P.S. Radiopharmaceutical chemistry for positron emission tomography. Adv. Drug Deliv. Rev. 2010, 62, 1031–1051. [Google Scholar] [CrossRef]
- Walsh, J.C.; Kolb, H.C. Applications of click chemistry in radiopharmaceutical development. CHIMIA Int. J. Chem. 2010, 64, 29–33. [Google Scholar] [CrossRef]
- Šečkutė, J.; Devaraj, N.K. Expanding room for tetrazine ligations in the in vivo chemistry toolbox. Curr. Opin. Chem. Biol. 2013, 17, 761–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A strain-promoted [3+2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. [Google Scholar] [CrossRef] [PubMed]
- Mbua, N.E.; Guo, J.; Wolfert, M.A.; Steet, R.; Boons, G.J. Strain-promoted alkyne–azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. ChemBioChem 2011, 12, 1912–1921. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Verduyn, L.S.; Mirfeizi, L.; Schoonen, A.K.; Dierckx, R.A.; Elsinga, P.H.; Feringa, B.L. Strain-promoted copper-free “click” chemistry for 18F radiolabeling of bombesin. Angew. Chem. Int. Ed. 2011, 50, 11117–11120. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, V.; Wuest, M.; Wuest, F. Copper-free click chemistry with the short-lived positron emitter fluorine-18. Org. Biomol. Chem. 2011, 9, 7393–7399. [Google Scholar] [CrossRef]
- Carpenter, R.D.; Hausner, S.H.; Sutcliffe, J.L. Copper-free click for PET: Rapid 1,3-dipolar cycloadditions with a fluorine-18 cyclooctyne. ACS Med. Chem. Lett. 2011, 2, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Hausner, S.H.; Carpenter, R.D.; Bauer, N.; Sutcliffe, J.L. Evaluation of an integrin αvβ6-specific peptide labeled with [18F] fluorine by copper-free, strain-promoted click chemistry. Nucl. Med. Biol. 2013, 40, 233–239. [Google Scholar] [CrossRef]
- Arumugam, S.; Chin, J.; Schirrmacher, R.; Popik, V.V.; Kostikov, A.P. [18F]Azadibenzocyclooctyne ([18F]ADIBO): A biocompatible radioactive labeling synthon for peptides using catalyst free [3+2] cycloaddition. Bioorg. Med. Chem. Lett. 2011, 21, 6987–6991. [Google Scholar] [CrossRef]
- Kettenbach, K.; Ross, T.L. A 18F-labeled dibenzocyclooctyne (DBCO) derivative for copper-free click labeling of biomolecules. Med. Chem. Comm. 2016, 7, 654–657. [Google Scholar] [CrossRef]
- Roche, M.; Specklin, S.; Richard, M.; Hinnen, F.; Génermont, K.; Kuhnast, B. [18F]FPyZIDE: A versatile prosthetic reagent for the fluorine-18 radiolabeling of biologics via copper-catalyzed or strain-promoted alkyne-azide cycloadditions. J. Label. Compd. Radiopharm. 2019, 62, 95–108. [Google Scholar] [CrossRef]
- Evans, H.L.; Carroll, L.; Aboagye, E.O.; Spivey, A.C. Bioorthogonal chemistry for 68Ga radiolabelling of DOTA-containing compounds. J. Label. Compd. Radiopharm. 2014, 57, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.C.; Hernandez-Vargas, S.; Rodriguez, M.; Kossatz, S.; Voss, J.; Carmon, K.S.; Reiner, T.; Schonbrunn, A.; Azhdarinia, A. Synthesis of a fluorescently labeled 68Ga-DOTA-TOC analog for somatostatin receptor targeting. ACS Med. Chem. Let. 2017, 8, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.G.; Mackey, J.L.; Jewett, J.C.; Sletten, E.M.; Houk, K.N.; Bertozzi, C.R. Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry. J. Am. Chem. Soc. 2012, 134, 9199–9208. [Google Scholar] [CrossRef]
- McNitt, C.D.; Popik, V.V. Photochemical generation of oxa-dibenzocyclooctyne (ODIBO) for metal-free click ligations. Org. Biomol. Chem. 2012, 10, 8200–8202. [Google Scholar] [CrossRef] [PubMed]
- Boudjemeline, M.; McNitt, C.D.; Singleton, T.A.; Popik, V.V.; Kostikov, A.P. [18F]ODIBO: A prosthetic group for bioorthogonal radiolabeling of macromolecules via strain-promoted alkyne–azide cycloaddition. Org. Biomol. Chem. 2018, 16, 363–366. [Google Scholar] [CrossRef]
- Sachin, K.; Jadhav, V.H.; Kim, E.M.; Kim, H.L.; Lee, S.B.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, D.W. F-18 Labeling protocol of peptides based on chemically orthogonal strain-promoted cycloaddition under physiologically friendly reaction condition. Bioconjugate Chem. 2012, 23, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Sachin, K.; Jeong, H.J.; Choi, W.; Lee, H.S.; Kim, D.W. F-18 labeled RGD probes based on bioorthogonal strain-promoted click reaction for PET imaging. ACS Med. Chem. Lett. 2015, 6, 402–407. [Google Scholar] [CrossRef]
- Jeon, J.; Kang, J.A.; Shim, H.E.; Nam, Y.R.; Yoon, S.; Kim, H.R.; Lee, D.E.; Park, S.H. Efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using strain-promoted copper-free click reaction. Bioorg. Med. Chem. 2015, 23, 3303–3308. [Google Scholar] [CrossRef]
- Choi, M.H.; Shim, H.E.; Nam, Y.R.; Kim, H.R.; Kang, J.A.; Lee, D.E.; Park, S.H.; Choi, D.S.; Jang, B.S.; Jeon, J. Synthesis and evaluation of an 125I-labeled azide prosthetic group for efficient and bioorthogonal radiolabeling of cyclooctyne-group containing molecules using copper-free click reaction. Bioorg. Med. Chem. Lett. 2016, 26, 875–878. [Google Scholar] [CrossRef]
- Zeng, D.; Ouyang, Q.; Cai, Z.; Xie, X.Q.; Anderson, C.J. New cross-bridged cyclam derivative CB-TE1K1P, an improved bifunctional chelator for copper radionuclides. Chem. Commun. 2014, 50, 43–45. [Google Scholar] [CrossRef]
- Yuan, H.; Wilks, M.Q.; El Fakhri, G.; Normandin, M.D.; Kaittanis, C.; Josephson, L. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials. PloS ONE 2017, 12, 0172722. [Google Scholar] [CrossRef] [PubMed]
- Öztürk Öncel, M.Ö.; Garipcan, B.; Inci, F. Biomedical Applications: Liposomes and Supported Lipid Bilayers for Diagnostics, Theranostics, Imaging, Vaccine Formulation, and Tissue Engineering. In Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization; Kök, F.N., Arslan Yildiz, A., Inci, F., Eds.; Springer: Cham, Switzerland, 2019; pp. 193–212. [Google Scholar]
- Hood, E.D.; Greineder, C.F.; Shuvaeva, T.; Walsh, L.; Villa, C.H.; Muzykantov, V.R. Vascular targeting of radiolabeled liposomes with bio-orthogonally conjugated ligands: Single chain fragments provide higher specificity than antibodies. Bioconjugate Chem. 2018, 29, 3626–3637. [Google Scholar] [CrossRef] [PubMed]
- Op’t Veld, R.C.; Joosten, L.; van den Boomen, O.; Boerman, O.; Kouwer, P.H.; Middelkoop, E.; Rowan, A.; Jansen, J.A.; Walboomers, F.; Wagener, F. Monitoring 111In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomater. Sci. 2019, 7, 3041–3050. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, N.A.; Park, J.Y.; Kim, K.; Kim, Y.J.; Shin, J.H.; Lee, Y.S.; Im, H.J.; Jeong, J.M.; Khalid, M.; Cheon, G.J.; et al. Development of 99mTc-Labeled Human Serum Albumin with Prolonged Circulation by Chelate-then-Click Approach: A Potential Blood Pool Imaging Agent. Mol. Pharm. 2019, 16, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Knall, A.C.; Slugovc, C. Inverse electron demand Diels–Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme. Chem. Soc. Rev. 2013, 42, 5131–5142. [Google Scholar] [CrossRef]
- Liu, F.; Liang, Y.; Houk, K.N. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels–Alder reactions of 1,2,4,5-tetrazines. J. Am. Chem. Soc. 2014, 136, 11483–11493. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.; Fox, J.M. Trans-Cyclooctene - a stable, voracious dienophile for bioorthogonal labeling. Curr. Opin. Chem. Biol. 2013, 17, 753–760. [Google Scholar] [CrossRef]
- Versteegen, R.M.; Rossin, R.; Ten Hoeve, W.; Janssen, H.M.; Robillard, M.S. Click to release: Instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem. Int. Ed. 2013, 52, 14112–14116. [Google Scholar] [CrossRef]
- Mushtaq, S.; Jeon, J. Synthesis of PET and SPECT radiotracers using inverse electron-demand Diels–Alder reaction. Appl. Chem. Eng. 2017, 28, 141–152. [Google Scholar]
- Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46, 4895–4950. [Google Scholar] [CrossRef]
- Li, Z.; Cai, H.; Hassink, M.; Blackman, M.L.; Brown, R.C.; Conti, P.S.; Fox, J.M. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem. Commun. 2010, 46, 8043–8045. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.; Liu, S.; Hassink, M.; Huang, C.W.; Yap, L.P.; Park, R.; Fox, J.M.; Li, Z.; Conti, P.S. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg. Med. Chem. Lett. 2011, 21, 5011–5014. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hassink, M.; Selvaraj, R.; Yap, L.P.; Park, R.; Wang, H.; Chen, X.; Fox, J.M.; Li, Z.; Conti, P.S. Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine–trans-cyclooctene ligation. Mol. Imaging 2013, 12, 121–128. [Google Scholar] [CrossRef]
- Reiner, T.; Keliher, E.J.; Earley, S.; Marinelli, B.; Weissleder, R. Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. Angew. Chem. Int. Ed. 2011, 50, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, S.; Hassink, M.; Nair, I.; Park, R.; Li, L.; Todorov, I.; Fox, J.M.; Li, Z.; Shively, J.E.; et al. Development and evaluation of 18F-TTCO-Cys40-Exendin-4: A PET Probe for Imaging Transplanted Islets. J. Nucl. Med. 2013, 54, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, S.; Wängler, C.; Wängler, B.; Lennox, R.B.; Schirrmacher, R. Synthesis of 3-chloro-6-((4-(di-tert-butyl[18F]-fluorosilyl)-benzyl)oxy)-1,2,4,5-tetrazine ([18F]SiFA-OTz) for rapid tetrazine-based 18F-radiolabeling. Chem. Commun. 2015, 51, 12415–12418. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C.; Richter, S.; Wuest, M.; Way, J.D.; Wuest, F. Synthesis and evaluation of an 18F-labelled norbornene derivative for copper-free click chemistry reactions. Org. Biomol. Chem. 2013, 11, 3817–3825. [Google Scholar] [CrossRef]
- Herth, M.M.; Andersen, V.L.; Lehel, S.; Madsen, J.; Knudsen, G.M.; Kristensen, J.L. Development of a 11C-labeled tetrazine for rapid tetrazine–trans-cyclooctene ligation. Chem. Commun. 2013, 49, 3805–3807. [Google Scholar] [CrossRef]
- Nichols, B.; Qin, Z.; Yang, J.; Vera, D.R.; Devaraj, N.K. 68Ga chelating bioorthogonal tetrazine polymers for the multistep labeling of cancer biomarkers. Chem. Commun. 2014, 50, 5215–5217. [Google Scholar] [CrossRef]
- Albu, S.A.; Al-Karmi, S.A.; Vito, A.; Dzandzi, J.P.; Zlitni, A.; Beckford-Vera, D.; Blacker, M.; Janzen, N.; Patel, R.M.; Capretta, A.; et al. 125I-Tetrazines and inverse-electron-demand Diels–Alder chemistry: A convenient radioiodination strategy for biomolecule labeling, screening, and biodistribution studies. Bioconjugate Chem. 2016, 27, 207–216. [Google Scholar] [CrossRef]
- Choi, M.H.; Shim, H.E.; Yun, S.J.; Kim, H.R.; Mushtaq, S.; Lee, C.H.; Park, S.H.; Choi, D.S.; Lee, D.E.; Byun, E.B.; et al. Highly efficient method for 125I-radiolabeling of biomolecules using inverse-electron-demand Diels–Alder reaction. Bioorg. Med. Chem. 2016, 24, 2589–2594. [Google Scholar] [CrossRef] [PubMed]
- Genady, A.R.; Tan, J.; Mohamed, E.; Zlitni, A.; Janzen, N.; Valliant, J.F. Synthesis, characterization and radiolabeling of carborane-functionalized tetrazines for use in inverse electron demand Diels–Alder ligation reactions. J. Organomet. Chem. 2015, 798, 278–288. [Google Scholar] [CrossRef]
- Zeglis, B.M.; Mohindra, P.; Weissmann, G.I.; Divilov, V.; Hilderbrand, S.A.; Weissleder, R.; Lewis, J.S. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels–Alder click chemistry. Bioconjugate Chem. 2011, 22, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Poty, S.; Membreno, R.; Glaser, J.M.; Ragupathi, A.; Scholz, W.W.; Zeglis, B.M.; Lewis, J.S. The inverse electron-demand Diels–Alder reaction as a new methodology for the synthesis of 225Ac-labelled radioimmunoconjugates. Chem. Commun. 2018, 54, 2599–2602. [Google Scholar] [CrossRef]
- Hernández-Gil, J.; Braga, M.; Harriss, B.I.; Carroll, L.S.; Leow, C.H.; Tang, M.X.; Aboagye, E.O.; Long, N.J. Development of 68Ga-labelled ultrasound microbubbles for whole-body PET imaging. Chem. Sci. 2019, 10, 5603–5615. [Google Scholar] [CrossRef] [PubMed]
- Altai, M.; Membreno, R.; Cook, B.; Tolmachev, V.; Zeglis, B.M. Pretargeted imaging and therapy. J. Nucl. Med. 2017, 58, 1553–1559. [Google Scholar] [CrossRef]
- Rossin, R.; Renart Verkerk, P.; Van Den Bosch, S.M.; Vulders, R.C.; Verel, I.; Lub, J.; Robillard, M.S. In vivo chemistry for pretargeted tumor imaging in live mice. Angew. Chem. Int. Ed. 2010, 49, 3375–3378. [Google Scholar] [CrossRef]
- Rossin, R.; van den Bosch, S.M.; ten Hoeve, W.; Carvelli, M.; Versteegen, R.M.; Lub, J.; Robillard, M.S. Highly Reactive trans-cyclooctene tags with improved stability for Diels–Alder chemistry in living systems. Bioconjugate Chem. 2013, 24, 1210–1217. [Google Scholar] [CrossRef]
- Rossin, R.; Läppchen, T.; van den Bosch, S.M.; Laforest, R.; Robillard, M.S. Diels–Alder reaction for tumor pretargeting: In vivo chemistry can boost tumor radiation dose compared with directly antibody. J. Nucl. Med. 2013, 54, 1989–1995. [Google Scholar] [CrossRef]
- Rossin, R.; van Duijnhoven, S.M.; Läppchen, T.; van den Bosch, S.M.; Robillard, M.S. Trans-Cyclooctene tag with improved properties for tumor pretargeting with the Diels–Alder reaction. Mol. Pharm. 2014, 11, 3090–3096. [Google Scholar] [CrossRef]
- Van Duijnhoven, S.M.; Rossin, R.; van den Bosch, S.M.; Wheatcroft, M.P.; Hudson, P.J.; Robillard, M.S. Diabody pretargeted with click chemistry in vivo. J. Nucl. Med. 2015, 56, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Altai, M.; Perols, A.; Tsourma, M.; Mitran, B.; Honarvar, H.; Robillard, M.; Rossin, R.; ten Hoeve, W.; Lubberink, M.; Orlova, A.; et al. Feasibility of Affibody-Based Bioorthogonal Chemistry–Mediated Radionuclide Pretargeting. J. Nucl. Med. 2016, 57, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Denk, C.; Svatunek, D.; Filip, T.; Wanek, T.; Lumpi, D.; Fröhlich, J.; Kuntner, C.; Mikula, H. Development of a 18F-Labeled Tetrazine with Favorable Pharmacokinetics for Bioorthogonal PET Imaging. Angew. Chem. Int. Ed. 2014, 53, 9655–9659. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.P.; Houghton, J.L.; Kozlowski, P.; Abdel-Atti, D.; Reiner, T.; Pillarsetty, N.V.K.; Scholz, W.W.; Zeglis, B.M.; Lewis, J.S. 18F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels− Alder Click Chemistry. Bioconjugate Chem. 2016, 27, 298–301. [Google Scholar] [CrossRef]
- Keinänen, O.; Fung, K.; Pourat, J.; Jallinoja, V.; Vivier, D.; Pillarsetty, N.K.; Airaksinen, A.J.; Lewis, J.S.; Zeglis, B.M.; Sarparanta, M. Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Res. 2017, 7, 95. [Google Scholar] [CrossRef]
- Keinänen, O.; Mäkilä, E.M.; Lindgren, R.; Virtanen, H.; Liljenbäck, H.; Oikonen, V.; Sarparanta, M.; Molthoff, C.; Windhorst, A.D.; Roivainen, A.; et al. Pretargeted PET Imaging of trans-Cyclooctene-Modified Porous Silicon Nanoparticles. ACS Omega 2017, 2, 62–69. [Google Scholar]
- Billaud, E.M.F.; Shahbazali, E.; Ahamed, M.; Cleeren, F.; Noël, T.; Koole, M.; Verbruggen, A.; Hessel, V.; Bormans, G. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chem. Sci. 2017, 8, 1251–1258. [Google Scholar]
- Billaud, E.M.; Belderbos, S.; Cleeren, F.; Maes, W.; Van de Wouwer, M.; Koole, M.; Verbruggen, A.; Himmelreich, U.; Geukens, N.; Bormans, G. Pretargeted PET imaging using a bioorthogonal 18F-Labeled trans-cyclooctene in an ovarian carcinoma model. Bioconjugate Chem. 2017, 28, 2915–2920. [Google Scholar] [CrossRef]
- Devaraj, N.K.; Thurber, G.M.; Keliher, E.J.; Marinelli, B.; Weissleder, R. Reactive polymer enables efficient in vivo bioorthogonal chemistry. Proc. Natl. Acad. Sci. USA 2012, 109, 4762–4767. [Google Scholar] [CrossRef] [Green Version]
- Denk, C.; Svatunek, D.; Mairinger, S.; Stanek, J.; Filip, T.; Matscheko, D.; Kuntner, C.; Wanek, T.; Mikula, H. Design, Synthesis, and Evaluation of a Low-Molecular-Weight 11C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in vivo Click Chemistry. Bioconjugate Chem. 2016, 27, 1707–1712. [Google Scholar] [CrossRef]
- Stéen, E.J.L.; Jørgensen, J.T.; Petersen, I.N.; Nørregaard, K.; Lehel, S.; Shalgunov, V.; Birke, A.; Edem, P.E.; L’Estrade, E.T.; Hansen, H.D.; et al. Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [11C]AE-1 for pretargeted PET imaging. Bioorg. Med. Chem. Lett. 2019, 20, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Zeglis, B.M.; Sevak, K.K.; Reiner, T.; Mohindra, P.; Carlin, S.D.; Zanzonico, P.; Weissleder, R.; Lewis, J.S. A pretargeted PET imaging strategy based on bioorthogonal Diels–Alder click chemistry. J. Nucl. Med. 2013, 54, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.E.; Adumeau, P.; Membreno, R.; Carnazza, K.E.; Brand, C.; Reiner, T.; Agnew, B.J.; Lewis, J.S.; Zeglis, B.M. Pretargeted PET imaging Using a Site-Specifically Labeled Immunoconjugate. Bioconjugate Chem. 2016, 27, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.L.; Zeglis, B.M.; Abdel-Atti, D.; Sawada, R.; Scholz, W.W.; Lewis, J.S. Pretargeted Immuno-PET of Pancreatic Cancer: Overcoming Circulating Antigen and Internalized Antibody to Reduce Radiation Doses. J. Nucl. Med. 2016, 57, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Adumeau, P.; Carnazza, K.E.; Brand, C.; Carlin, S.D.; Reiner, T.; Agnew, B.J.; Lewis, J.S.; Zeglis, B.M. A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer. Theranostics 2016, 6, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.L.; Nguyen, Q.D.; Carroll, L.S.; Kaliszczak, M.; Twyman, F.J.; Spivey, A.C.; Aboagye, E.O. A bioorthogonal 68Ga-labelling strategy for rapid in vivo imaging. Chem. Commun. 2014, 50, 9557–9560. [Google Scholar] [CrossRef]
- Meyer, J.P.; Tully, K.M.; Jackson, J.; Dilling, T.R.; Reiner, T.; Lewis, J.S. Bioorthogonal Masking of Circulating Antibody–TCO Groups Using Tetrazine-Functionalized Dextran Polymers. Bioconjugate Chem. 2018, 29, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Bilton, H.; Vito, A.; Genady, A.R.; Rathmann, S.M.; Ahmad, Z.; Janzen, N.; Czorny, S.; Zeglis, B.M.; Francesconi, L.C.; et al. A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: A proof of concept study using 99mTc- and 177Lu-labeled tetrazines. J. Med. Chem. 2016, 59, 9381–9389. [Google Scholar] [CrossRef]
- García, M.F.; Gallazzi, F.; de Souza Junqueira, M.; Fernández, M.; Camacho, X.; da Silva Mororó, J.; Faria, D.; de Godoi Carneiro, C.; Couto, M.; Carrión, F.; et al. Synthesis of hydrophilic HYNIC-[1,2,4,5] tetrazine conjugates and their use in antibody pretargeting with 99mTc. Org. Biomol. Chem. 2018, 16, 5275–5285. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Zhang, X.; Rossin, R.; Robillard, M.S.; Fisher, D.R.; Bueltmann, T.; Hoeben, F.J.; Quinn, T.P. Metal-free cycloaddition chemistry driven pretargeted radioimmunotherapy using α-particle radiation. Bioconjugate chem. 2017, 28, 3007–3015. [Google Scholar] [CrossRef]
- Jeon, J.; Shen, B.; Xiong, L.; Miao, Z.; Lee, K.H.; Rao, J.; Chin, F.T. Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. Bioconjugate Chem. 2012, 23, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Cheng, K.; Jeon, J.; Shen, B.; Venturin, G.T.; Hu, X.; Rao, J.; Chin, F.T.; Wu, H.; Cheng, Z. Comparison of Two Site-Specifically 18F-Labeled Affibodies for PET Imaging of EGFR Positive Tumors. Mol. Pharm. 2014, 11, 3947–3956. [Google Scholar] [CrossRef] [PubMed]
- Inkster, J.A.; Colin, D.J.; Seimbille, Y. A novel 2-cyanobenzothiazole-based 18F prosthetic group for conjugation to 1,2-aminothiol-bearing targeting vectors. Org. Biomol. Chem. 2015, 13, 3667–3676. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.T.; Nguyen, K.; Ieritano, C.; Gao, F.; Seimbille, Y. A Flexible Synthesis of 68Ga-Labeled Carbonic Anhydrase IX (CAIX)-Targeted Molecules via CBT/1,2-Aminothiol Click Reaction. Molecules 2019, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Ieritano, C.; Chen, K.-T.; Dias, G.M.; Rousseau, J.; Bénard, F.; Seimbille, Y. Two bifunctional desferrioxamine chelators for bioorthogonal labeling of biovectors with zirconium-89. Org. Biomol. Chem. 2018, 16, 5102–5106. [Google Scholar] [CrossRef]
- Mushtaq, S.; Choi, D.S.; Jeon, J. Radiosynthesis of 125I-labeled 2-cyanobenzothiazole: A new prosthetic group for efficient radioiodination reaction. J. Radiopharm. Mol. Probes 2017, 3, 44–51. [Google Scholar]
- Toda, N.; Asano, S.; Barbas, C.F., III. Rapid, Stable, Chemoselective Labeling of Thiols with Julia Kocieński like Reagents: A Serum-Stable Alternative to Maleimide-Based Protein Conjugation. Angew. Chem. Int. Ed. 2013, 52, 12592–12596. [Google Scholar] [CrossRef]
- Chiotellis, A.; Sladojevich, F.; Mu, L.; Herde, A.M.; Valverde, I.E.; Tolmachev, V.; Schibli, R.; Ametamey, S.M.; Mindt, T.L. Novel chemoselective 18F-radiolabeling of thiol-containing biomolecules under mild aqueous conditions. Chem. Commun. 2016, 52, 6083–6086. [Google Scholar] [CrossRef]
- Shim, H.E.; Mushtaq, S.; Song, L.; Lee, C.H.; Lee, H.; Jeon, J. Development of a new thiol-reactive prosthetic group for site-specific labeling of biomolecules with radioactive iodine. Bioorg. Med. Chem. Lett. 2018, 28, 2875–2878. [Google Scholar] [CrossRef]
- Mushtaq, S.; Nam, Y.R.; Kang, J.A.; Choi, D.S.; Park, S.H. Efficient and Site-Specific 125I Radioiodination of Bioactive Molecules Using Oxidative Condensation Reaction. ACS Omega 2018, 3, 6903–6911. [Google Scholar] [CrossRef]
- Al-Momani, E.; Israel, I.; Buck, A.K.; Samnick, S. Improved synthesis of [18F]FS-PTAD as a new tyrosine-specific prosthetic group for radiofluorination of biomolecules. Appl. Radiat. Isot. 2015, 104, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Zlatopolskiy, B.D.; Kandler, R.; Mottaghy, F.M.; Neumaier, B. C-(4-[18F]fluorophenyl)-N-phenyl nitrone: A novel 18F-labeled building block for metal free [3+2] cycloaddition. Appl. Radiat. Isot. 2012, 70, 184–192. [Google Scholar] [CrossRef]
- Zlatopolskiy, B.D.; Kandler, R.; Kobus, D.; Mottaghy, F.M.; Neumaier, B. Beyond azide–alkyne click reaction: Easy access to 18F-labelled compounds via nitrile oxide cycloadditions. Chem. Commun. 2012, 48, 7134–7136. [Google Scholar] [CrossRef] [PubMed]
- Urkow, J.; Bergman, C.; Wuest, F. Sulfo-click chemistry with 18F-labeled thio acids. Chem. Commun. 2019, 55, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Eichenberger, L.S.; Fischer, G.; Holland, J.P. Photochemical Conjugation and One-Pot Radiolabelling of Antibodies for Immune-PET. Angew. Chem. Int. Ed. 2019, 58, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, L.S.; Patra, M.; Holland, J.P. Photoactive chelates for radiolabelling proteins. Chem. Commun. 2019, 55, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Klingler, S.; Eichenberger, L.S.; Holland, J.P. Simultaneous Photoradiochemical Labeling of Antibodies for Immuno-Positron Emission Tomography. IScience 2019, 13, 416–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | DBCO Precursor | Azide Precursor | Product a | RCY(%) | Ref |
---|---|---|---|---|---|
1 | R = 4-azidoaniline, 11-azido-3,6,9-trioxaundane-1-amine, 6-azido-6-deoxyglucose, 2-azido-deoxyglucose, azido-geldanamycin | 69–98 | [55] | ||
2 | R = Ph, PEGylated acid | 64–75 | [56] | ||
3 | R = A20FMDV2 peptide | 12 | [57] | ||
4 | R = Tyr3-octreotate peptide | 95 | [58] | ||
5 | R = cRGD peptide | 93 | [59] | ||
6 | >95 | [60] | |||
7 | R = (PEG)3-DOTA-68Ga | 94–100 | [61] | ||
8 | R = Tyr3-octreotate peptide | 80 | [62] |
Entry | Tetrazine | Dienophile | Product a | RCY (%) | Ref |
1 | >98 | [82] | |||
2 | R = c(RGDyC) or VEGF protein | 95 c(RGDyC), 75 (VEGF) | [84] | ||
3 | R= AZD2281 | 92 | [85] | ||
4 | R= Cys40-exendin-4 | >80 | [86] | ||
5 | >99 | [87] | |||
6 | R = Bombesin | 46 | [88] | ||
7 | >98 | [89] | |||
8 | Tz-polymer | anti-A33 antibody | - | [90] | |
9 | anti-VEGFR2 antibody | 69 | [91] | ||
10 | R = cRGD peptide, HSA protein | >99 (cRGD), 93 (HSA) | [92] |
Entry | Biomolecule | Radiotracer | Animal Model | Ref |
---|---|---|---|---|
1 | CC49-TCO antibody | 111In-labeled tetrazine | LS174T cells (Balb/C mouse) | [98] |
2 | CC49-TCO antibody | 111In-labeled tetrazine | LS174T cells (Balb/C mouse) | [99] |
3 | CC49-TCO antibody | 177Lu-labeled tetrazine | LS174T cells (Balb/C mouse) | [100] |
4 | CC49-TCO antibody | 177Lu-labeled tetrazine | LS174T cells (Balb/C mouse) | [101] |
5 | AVP04-07-TCO diabody | 177Lu-labeled tetrazine | LS174T cells (Balb/C mouse) | [102] |
6 | Z2395-TCO affibody | 111In-labeled tetrazine 177Lu-labeled tetrazine | SKOV-3 cells (Balb/C mouse) | [103] |
7 | PEGylated-TCO | 18F-labeled tetrazine | Healthy Balb/C mouse | [104] |
8 | 5B1-TCO antibody | 18F-labeled tetrazine | BxPC3 cells (athymic nude mice) | [105] |
9 | Cetuximab-TCO antibody Trastuzumab-TCO antibody | 18F-labeled tetrazine | A431 cells (nu/nu mouse) BT-474 cells (nu/nu mouse) | [106] |
10 | Porous silicon-TCO nanoparticle | 18F-labeled tetrazine | Healthy (Balb/C mouse) | [107] |
11 | PSMA antagonist-tetrazine conjugate | 18F-labeled TCO | LNCaP cells (Balb/C mouse) | [108] |
12 | Trastuzumab-tetrazine antibody | 18F-labeled TCO | SKOV-3 cells (Balb/C mouse) | [109] |
13 | A33-TCO antibody | 18F-labeled tetrazine | LS174T cells (Balb/C mouse) A431 cells (Balb/C mouse) | [110] |
14 | Mesoporous silica-TCO nanoparticle | 11C-labeled tetrazine | Healthy Balb/C mouse | [111] |
15 | Polyglutamic acid-TCO | 11C-labeled tetrazine | CT26 cell (Balb/C mouse) | [112] |
16 | A33-TCO antibody | 64Cu-labeled tetrazine | SW1222 cell (mouse) | [113] |
17 | HuA33-TCO antibody | 64Cu-labeled tetrazine | SW1222 cell (mouse) | [114] |
18 | 5B1-TCO antibody | 64Cu-labeled tetrazine | BxPC3 and Capan-2 cells (athymic nude mice) | [115] |
19 | HuA33-dye-800-TCO | 64Cu-labeled tetrazine | SW1222 cell (mouse) | [116] |
20 | C225-TCO antibody | 68Ga-labeled tetrazine | A431 cells (Balb/C mouse) | [117] |
21 | HuA33-TCO antibody | 68Ga-labeled tetrazine | SW1222 cell (CrTac:NCr- Foxn1nu mouse) | [118] |
22 | Bisphosphonate-TCO conjugate | 177Lu-labeled tetrazine 99mTc-labeled tetrazine | Healthy Balb/C mouse | [119] |
23 | Bevacizumab-TCO antibody | 99mTc-labeled tetrazine | B16-F10 cell (C57 Bl/6J mouse) | [120] |
24 | CC49-TCO antibody | 212Pb-labeled tetrazine | LS174T cells (Balb/C mouse) | [121] |
Entry | Radiotracer | Target Molecule | Product | RCY (%) | Ref |
---|---|---|---|---|---|
1 | R = cRGD2 peptide, RLuc8 protein, ZEGFR:1907 affibody | 80 (cRGD), 12 (RLuc8), 41 (ZEGFR:1907) | [122,123] | ||
2 | R = cRGD peptide | 7 | [124] | ||
3 | 99 | [125] | |||
4 | R = cRGD peptide | >99 | [127] | ||
5 | R= BBN peptide, ZHER2:2395 affibody | >99 (BBN), 40 (ZHER2:2395) | [129] | ||
6 | HSA protein, GCQRPPR peptide | R = HSA protein, GCQRPPR peptide | 65 (HSA), 99 (GCQRPPR) | [130] | |
7 | R = cRGD peptide, HSA protein | 99 (cRGD), 94 (HSA) | [131] | ||
8 | 45 | [132] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, S.; Yun, S.-J.; Jeon, J. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019, 24, 3567. https://doi.org/10.3390/molecules24193567
Mushtaq S, Yun S-J, Jeon J. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules. 2019; 24(19):3567. https://doi.org/10.3390/molecules24193567
Chicago/Turabian StyleMushtaq, Sajid, Seong-Jae Yun, and Jongho Jeon. 2019. "Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals" Molecules 24, no. 19: 3567. https://doi.org/10.3390/molecules24193567
APA StyleMushtaq, S., Yun, S. -J., & Jeon, J. (2019). Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules, 24(19), 3567. https://doi.org/10.3390/molecules24193567