Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size and Zeta Potential
2.2. Encapsulation Efficiency (EE%) and Drug Loading (DL%)
2.3. Morphological Characterization
2.4. In Vitro DTX Release Studies
2.5. Hemocompatibility Study
2.6. In Vitro Cytotoxicity Studies
2.7. Pharmacokinetic Studies
3. Materials and Methods
3.1. Materials
3.2. Preparation of DTX-Loaded Liposomes and Chitosomes
3.3. Particle Size Distribution and Zeta Potential Measurements
3.4. Determination of Encapsulation Efficiency (EE%) and Drug Loading (DL%)
3.5. Morphological Characterization
3.6. In Vitro DTX Release Studies
3.7. In Vitro Hemocompatability Study
3.8. In Vitro Cytotoxicity Studies
3.9. In Vivo Pharmacokinetic Study
3.10. HPLC Analysis
3.11. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hekmat, A.; Hossein, A.; Ali, A.; Seyf, K.; Maryam, I.; Mahmoud, R.J. New Oral Formulation and in Vitro Evaluation of Docetaxel-Loaded Nanomicelles. Molecules 2016, 21, 1265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Astruc, D. Docetaxel Nanotechnology in Anticancer Therapy. Chem. Med. Chem. 2012, 7, 952–972. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Nam, N.-R.; So, H.-J. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J. Ind. Eng. Chem. 2014, 20, 1481–1485. [Google Scholar] [CrossRef]
- Dou, J.; Zhang, H.; Liu, X.; Zhang, M.; Zhai, G. Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration. Colloids Surf. B Biointerfaces 2014, 114, 20–27. [Google Scholar] [CrossRef]
- Taymouri, S.; Hassanzadeh, F.; Javanmard, S.; Mahzouni, P.; Varshosaz, J. Pharmacokinetics, Organ Toxicity and Antitumor Activity of Docetaxel Loaded in Folate Targeted Cholesterol Based Micelles. Curr. Drug Deliv. 2016, 13, 545–556. [Google Scholar] [CrossRef]
- Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Ann. Rev. Biomed. 2007, 9, 257–288. [Google Scholar] [CrossRef]
- Chen, H.; Hao, P.; Panpan, L.; Hui, W.; Xin, W.; Weisan, P.; Yue, Y. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf. B Biointerfaces 2016, 143, 455–462. [Google Scholar] [CrossRef]
- El Zaafarany, G.M.; Awad, G.A.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010, 397, 164–172. [Google Scholar] [CrossRef]
- Alomrani, A.H.; Gamal, A.S.; Amro, A.A.; Badran, M. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacyusing Candida albicans as model. Colloids Surf. B Biointerfaces 2014, 121, 74–81. [Google Scholar] [CrossRef]
- Perez, A.P.; Altube, M.J.; Schilrreff, P.; Apezteguia, G.; Celes, F.S.; Zacchino, S.; de Oliveira, C.I.; Romero, E.L.; Morilla, M.J. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf. B Biointerfaces 2015, 139, 190–198. [Google Scholar] [CrossRef]
- Mady, M.M.; Darwish, M.M.; Khalil, S.; Khalil, W.M. Biophysical studies on chitosancoated liposomes. Eur. Biophys. J. 2009, 38, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Laye, C.; McClements, D.J.; Weiss, J. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J. Food Sci. 2008, 73, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Salva, E.; Turan, S.O.; Eren, F.; Akbuga, J. The enhancement of genesilencing efficiency with chitosan-coated liposome formulations of siRNAstargeting HIF-1alpha and VEGF. Int. J. Pharm. 2015, 478, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Junli, L.; Jinhua, G.; Shilei, C.; Guihua, H. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int. J. Pharm. 2016, 495, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Alshamsan, A.; Fadilah, S.A.; Mohamed, B.; Fulwah, Y.; Haya, A.; Abdulaziz, A.; Sara, A. Exploring anti-MRSA activity of chitosan-coated liposomal dicloxacillin. J. Microbiol. Methods 2019, 156, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.X.; Huang, L.; Liu, L.; Abdalla, A.M.; Gauthier, M. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. B 2014, 2, 7149–7159. [Google Scholar] [CrossRef]
- Chen, M.X.; Bai-Kun, L.; Deng-Ke, Y.; Jie, L.; Shan-Shan, L.; Dai-Yin, P. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery. Carbohyd. Polym. 2014, 111, 298–304. [Google Scholar] [CrossRef]
- Sunderland, C.J.; Steiert, M.; Talmadge, J.E.; Derfus, A.M.; Barry, S.E. Targeted nanoparticles for detecting and treating cancer. Drug Dev. Res. 2006, 67, 70–93. [Google Scholar] [CrossRef]
- Gillet, A.; Lecomte, F.; Hubert, P.; Ducat, E.; Evrard, B.; Piel, G. Skin penetration behaviour of liposomes as a function of their composition. Eur. J. Pharm. Biopharm. 2011, 79, 43–53. [Google Scholar] [CrossRef]
- Rambabu, C.; Naganjaneyulu, T.; Archana, T.; Papa, C. Extractive spectrophotometric methods for the determination of docetaxel in pure and pharmaceutical formulations. Der Pharma Chem. 2013, 5, 131–136. [Google Scholar]
- Zhao, G.D.; Sun, R.; Ni, S.L.; Xia, Q. Development and characterisation of a novel chitosan-coated antioxidant liposome containing both coenzyme Q10 and α-lipoic acid. J. Microencapsul. 2015, 32, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Díez-Sales, O.; Pons, R.; Carbone, C.; Ennas, G.; Puglisi, G.; Fadda, A.M.; Manconi, M. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J. Colloid Interf. Sci. 2016, 461, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paolino, D.; Fresta, M.; Sinha, P.; Ferrari, M. Encyclopedia of Medical Devices and Instrumentation, 2nd ed.; Webester, J.G., Ed.; John Wiley and Sons: New York, NY, USA, 2006; Volume 437. [Google Scholar]
- Perugini, P.; Genta, I.; Pavanetto, F.; Conti, B.; Scalia, S.; Baruffini, A. Study on glycolic acid delivery by liposomes and microspheres. Int. J. Pharm. 2000, 196, 51–61. [Google Scholar] [CrossRef]
- Badran, M.M.; Alomrani, A.; Harisa, G.I.; Ashour, A.E.; Kumar, A.; Yassin, A.E. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed. Pharmacother. 2018, 106, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Shihui, Y.; Hao, P.; Jinyu, L.; Dandan, L.; Kun, Y.; Xinggang, Y. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Inter. J. Biol. Macromol. 2017, 94, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lv, S.; Lu, J.; Jiang, S.; Lin, L. Characterization, stability, and in vitro release evaluation of carboxymethyl chitosan coated liposomes containing fish oil. J. Food Sci. 2015, 80, 1460–1467. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, T.; Liu, Y.; Wang, Q.; Xing, S.; Li, L.; Wang, L.; Liu, L.; Gao, D. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy. Mater. Sci. Eng. 2017, 71, 1231–1240. [Google Scholar] [CrossRef]
- Panwar, P.; Pandey, B.; Lakhera, P.; Singh, K. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomed. 2010, 5, 101–108. [Google Scholar] [PubMed]
- Dragicevic-Curic, N.; Susanna, G.; Burkhard, G.; Sven, W.; Alfred, F. Surface charged temoporfin-loaded flexible vesicles: In vitro skin penetration studies and stability. Inter. J. Pharm. 2010, 384, 100–108. [Google Scholar] [CrossRef]
- Beenken, K.E.; Smith, J.K.; Skinner, R.A. Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J. Biomater. 2014, 29, 514–523. [Google Scholar] [CrossRef]
- Yu, T.; Alexander, M.; Hamidreza, G. Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity. ACS Nano 2017, 5, 5717–5728. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.M.; Gamaleldin, I.H.; Saeed, A.A.; Fars, K.A.; Khairy, M.A. Pravastatin-loaded chitosan: Formulation, characterization and cytotoxicity studies. J. Drug Deliv. Sci. Technol. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Bian, Y.; Gao, D.; Liu, Y.; Li, N.; Zhang, X.; Zheng, R.Y.; Wang, Q.; Luo, L.; Dai, K. Preparation and study on anti-tumor effect of chitosan-coated oleanolic acid liposomes. RSC Adv. 2015, 5, 18725–18732. [Google Scholar] [CrossRef]
- Tan, C.; Xue, J.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Liposome as a delivery system for carotenoids: Comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. J. Agri. Food Chem. 2014, 62, 6726–6735. [Google Scholar] [CrossRef] [PubMed]
- Tsumoto, K.; Matsuo, H.; Tomita, M.; Yoshimura, T. Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids Surf. B Biointerfaces 2009, 68, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, X.; Jacobson, O.; Lin, L.; Huang, P.; Niu, G.; Ma, Q.; Chen, X. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultra-small gold nano-rod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lai, W.; Cui, M.; Liang, L.; Lin, Y.; Fang, Q.; Liu, Y.; Xie, L. An Evaluation of Blood Compatibility of Silver nanopaticles. Sci. Rep. 2016, 5, 25518. [Google Scholar] [CrossRef]
- Zuo, T.; Minglu, Y.G.; Fang, C.; Shanshan, Z.; Ting, L.; Wei, W.; Guimei, S. RGD (Arg-Gly-Asp) internalized docetaxel-loaded pH sensitive liposomes: Preparation, characterization and antitumor efficacy in vivo and in vitro. Colloids Surf. B Biointerfaces 2016, 147, 90–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Meirong, H.; Jianping, Z.; Shaofei, X. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Compt. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- Kim, D.W.; Abid, M.Y.; Dong, X.L.; Jong, O.K.; Chul, S.Y.; Kwan, H.C.; Han-Gon, C. Development of RP-HPLC method for simultaneous determination of docetaxel and curcumin in rat plasma: Validation and stability. Asian J. Pharm. Sci. 2017, 12, 105–113. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
Codes Ingredients | CL | FL-T | FL-T-DP | FL-NDC | FL-NDC-DP |
---|---|---|---|---|---|
Lipid | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Cholesterol | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Tween-80 | - | 0.1 | 0.1 | - | |
NDC | - | - | - | 0.1 | 0.1 |
DP | - | - | 0.1 | - | 0.1 |
CS (mg/mL) | - | - | - | - | - |
DTX (mg/mL) | 5 | 5 | 5 | 5 | 5 |
Codes Ingredients | C-CL | C-FL-T | C-FL-T-DP | C-FL-NDC | C-FL-NDC-DP |
---|---|---|---|---|---|
Lipid | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Cholesterol | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Tween-80 | - | 0.1 | 0.1 | - | - |
NDC | - | - | - | 0.1 | 0.1 |
DP | - | - | 0.1 | 0.1 | |
CS (mg/mL) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
DTX (mg/mL) | 5 | 5 | 5 | 5 | 5 |
Codes | Particle Size (nm) | PDI | Zeta Potential (mV) | EE% | DL% |
---|---|---|---|---|---|
CL | 238.2 ± 14.2 | 0.413 ± 0.030 | −5.59 ± 0.25 | 58.7 ± 5.6 | 4.62 ± 0.84 |
FL-T | 148.2 ± 10.7 | 0.282 ± 0.014 | −12.77 ± 1.63 | 72.3 ± 4.5 | 6.83 ± 0.77 |
FL-T-DP | 174.6 ± 8.1 | 0.224 ± 0.011 | −38.43 ± 2.96 | 83.8 ± 2.7 | 8.83 ± 1.41 |
FL-SDC | 137.6 ± 6.3 | 0.229 ± 0.028 | −23.05 ± 3.46 | 91.7 ± 6.3 | 10.34 ± 1.27 |
FL-SDC-DP | 165.5 ± 11.1 | 0.303 ± 0.072 | −41.81 ± 4.20 | 94.4 ± 4.5 | 11.85 ± 1.35 |
Codes | Particle Size (nm) | PDI | Zeta Potential (mV) | EE% | DL% |
---|---|---|---|---|---|
C-CL | 328.6 ± 9.1 | 0.581 ± 0.063 | 9.67 ± 1.56 | 76.5 ± 3.4 | 6.05 ± 0.78 |
C-FL-T | 218.9 ± 4.3 | 0.251 ± 0.042 | 14.74 ± 2.49 | 86.9 ± 8.1 | 7.96 ± 0.68 |
C-FL-T-D | 284.1 ± 11.5 | 0.283 ± 0.024 | 36.75 ± 1.46 | 95.3 ± 3.7 | 9.81 ± 1.05 |
C-FL-SDC | 190.6 ± 9.4 | 0.219 ± 0.011 | 21.65 ± 2.68 | 96.4 ± 4.1 | 11.06 ± 1.21 |
C-FL-SDC-DC | 251.5 ± 13.8 | 0.324 ± 0.077 | 44.92 ± 3.61 | 98.6 ± 7.2 | 13.24 ± 1.48 |
Parameters | Onkotaxel® | FL-NDC-DP | C-FL-NDC-DP |
---|---|---|---|
Dose (mg/kg) | 13 | 13 | 13 |
Cmax (mg/L) | 5.605 ± 1.322 | 19.415 ± 3.457 | 34.138 ± 4.752 |
Tmax (h) | 0.5 | 2 | 2 |
t1/2 (h) | 3.067 ± 0.878 | 4.544 ± 1.217 | 9.288 ± 1.977 |
AUC0→t (mg/L.h) | 13.429 ± 2.478 | 131.802 ± 7.331 | 294.287 ± 11.255 |
AUC0→∞ (mg/L.h) | 14.300 ± 2.115 | 136.563 ± 5.745 | 335.096 ± 14.427 |
MRT (h) | 3.5 | 6.1 | 10.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshraim, M.O.; Sangi, S.; Harisa, G.I.; Alomrani, A.H.; Yusuf, O.; Badran, M.M. Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition. Molecules 2019, 24, 250. https://doi.org/10.3390/molecules24020250
Alshraim MO, Sangi S, Harisa GI, Alomrani AH, Yusuf O, Badran MM. Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition. Molecules. 2019; 24(2):250. https://doi.org/10.3390/molecules24020250
Chicago/Turabian StyleAlshraim, Mohammed O., Sibghatullah Sangi, Gamaleldin I. Harisa, Abdullah H. Alomrani, Osman Yusuf, and Mohamed M. Badran. 2019. "Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition" Molecules 24, no. 2: 250. https://doi.org/10.3390/molecules24020250
APA StyleAlshraim, M. O., Sangi, S., Harisa, G. I., Alomrani, A. H., Yusuf, O., & Badran, M. M. (2019). Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition. Molecules, 24(2), 250. https://doi.org/10.3390/molecules24020250