Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Distribution of the S1 Domain between Organism Super-Kingdoms
2.2. S1 domain in Bacterial Proteins
2.3. S1 domain in Eukaryotic Proteins
2.4. S1 domain in Archaeal Proteins
2.5. Analysis of Consensus Sequence of S1 Domains from Bacteria, Eukaryotes, and Archaea
2.6. Identity of S1 Domains in the Bacterial, Eukaryotic, and Archaeal Proteins
2.7. Analysis of Structural Flexibility and Disorder of the S1 Domains
2.8. Different Number of Structural S1 Repeats in Proteins and Its Molecular Functions
3. Materials and Methods
3.1. Construction Dataset of the Protein Containing S1 Domains
3.2. Analysis of S1 Domain Structures
3.3. Analysis of Amino Acid Sequence Alignment
3.4. Statistical Analysis of the Data
3.5. Phylogenetic Analysis of S1 Domains
3.6. Calculation of Radius of Gyration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wetlaufer, D.B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA 1973, 70, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Kim, K.M.; Caetano-Anollés, G. Global patterns of protein domain gain and loss in superkingdoms. PLoS Comput. Biol. 2014, 10, e1003452. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, M.; Hubbard, T.J.; Proctor, M.; Freund, S.M.; Murzin, A.G. The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold. Cell 1997, 88, 235–242. [Google Scholar] [CrossRef]
- Amblar, M.; Barbas, A.; Gomez-Puertas, P.; Arraiano, C.M. The role of the S1 domain in exoribonucleolytic activity: Substrate specificity and multimerization. RNA 2007, 13, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, M.; Edge, R.E.; Lario, P.; Cook, M.A.; Strynadka, N.C.J.; Mackie, G.A.; McIntosh, L.P. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces. J. Mol. Biol. 2004, 341, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Deryusheva, E.I.; Machulin, A.V.; Selivanova, O.M.; Galzitskaya, O.V. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family. Proteins Struct. Funct. Bioinform. 2017, 85, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.C.; Sicheri, F. X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Mol. Cell 2002, 10, 295–305. [Google Scholar] [CrossRef]
- Mohanty, B.K.; Kushner, S.R. Polynucleotide phosphorylase functions both as a 3′ → 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc. Natl. Acad. Sci. USA 2000, 97, 11966–11971. [Google Scholar] [CrossRef]
- Mian, I.S. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 1997, 25, 3187–3195. [Google Scholar] [CrossRef]
- Mitchell, P.; Petfalski, E.; Shevchenko, A.; Mann, M.; Tollervey, D. The exosome: A conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 1997, 91, 457–466. [Google Scholar] [CrossRef]
- Carpousis, A.J. The Escherichia coli RNA degradosome: Structure, function and relationship in other ribonucleolytic multienzyme complexes. Biochem. Soc. Trans. 2002, 30, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.F.; Deutscher, M.P. An important role for RNase R in mRNA decay. Mol. Cell 2005, 17, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Briant, D.J.; Hankins, J.S.; Cook, M.A.; Mackie, G.A. The quaternary structure of RNase G from Escherichia coli. Mol. Microbiol. 2003, 50, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Strauß, M.; Vitiello, C.; Schweimer, K.; Gottesman, M.; Rösch, P.; Knauer, S.H. Transcription is regulated by NusA:NusG interaction. Nucleic Acids Res. 2016, 44, 5971–5982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, T.M.; Deppisch, H.; Scarlato, V.; Gross, R. A new gene locus of Bordetella pertussis defines a novel family of prokaryotic transcriptional accessory proteins. J. Bacteriol. 1996, 178, 4445–4452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.J.; Close, D.; Robinson, H.; Vallet-Gely, I.; Dove, S.L.; Hill, C.P. Crystal structure and RNA binding of the Tex protein from Pseudomonas aeruginosa. J. Mol. Biol. 2008, 377, 1460–1473. [Google Scholar] [CrossRef] [PubMed]
- Antelmann, H.; Bernhardt, J.; Schmid, R.; Mach, H.; Völker, U.; Hecker, M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997, 18, 1451–1463. [Google Scholar] [CrossRef]
- Bernhardt, J.; Volker, U.; Volker, A.; Antelmann, H.; Schmid, R.; Mach, H.; Hecker, M. Specific and general stress proteins in Bacillus subtilis—A two-dimensional protein electrophoresis study. Microbiology 1997, 143, 999–1017. [Google Scholar] [CrossRef]
- Kaan, T.; Homuth, G.; Mäder, U.; Bandow, J.; Schweder, T. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 2002, 148, 3441–3455. [Google Scholar] [CrossRef]
- Nanamiya, H.; Akanuma, G.; Natori, Y.; Murayama, R.; Kosono, S.; Kudo, T.; Kobayashi, K.; Ogasawara, N.; Park, S.-M.; Ochi, K.; et al. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol. Microbiol. 2004, 52, 273–283. [Google Scholar] [CrossRef]
- Yu, W.; Hu, J.; Yu, B.; Xia, W.; Jin, C.; Xia, B. Solution structure of GSP13 from Bacillus subtilis exhibits an S1 domain related to cold shock proteins. J. Biomol. NMR 2009, 43, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Machulin, A.V.; Deryusheva, E.I.; Selivanova, O.M.; Galzitskaya, O. V The number of domains in the ribosomal protein S1 as a hallmark of the phylogenetic grouping of bacteria. PLoS ONE 2019, 14, e0221370. [Google Scholar] [CrossRef] [PubMed]
- Salah, P.; Bisaglia, M.; Aliprandi, P.; Uzan, M.; Sizun, C.; Bontems, F. Probing the relationship between gram-negative and gram-positive S1 proteins by sequence analysis. Nucleic Acids Res. 2009, 37, 5578–5588. [Google Scholar] [CrossRef] [PubMed]
- Frazão, C.; McVey, C.E.; Amblar, M.; Barbas, A.; Vonrhein, C.; Arraiano, C.M.; Carrondo, M.A. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature 2006, 443, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Januszyk, K.; Lima, C.D. The eukaryotic RNA exosome. Curr. Opin. Struct. Biol. 2014, 24, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hierlmeier, T.; Merl, J.; Sauert, M.; Perez-Fernandez, J.; Schultz, P.; Bruckmann, A.; Hamperl, S.; Ohmayer, U.; Rachel, R.; Jacob, A.; et al. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res. 2013, 41, 1191–1210. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.; Hoffman, D.W. The crystal structure of the N-terminal region of the alpha subunit of translation initiation factor 2 (eIF2α) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2α-specific kinases. J. Mol. Biol. 2003, 334, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Vos, S.M.; Farnung, L.; Boehning, M.; Wigge, C.; Linden, A.; Urlaub, H.; Cramer, P. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 2018, 560, 607–612. [Google Scholar] [CrossRef]
- Büttner, K.; Wenig, K.; Hopfner, K.-P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell 2005, 20, 461–471. [Google Scholar] [CrossRef]
- Benelli, D.; Londei, P. Translation initiation in Archaea: Conserved and domain-specific features. Biochem. Soc. Trans. 2011, 39, 89–93. [Google Scholar] [CrossRef]
- Dmitriev, S.E.; Stolboushkina, E.A.; Terenin, I.M.; Andreev, D.E.; Garber, M.B.; Shatsky, I.N. Archaeal translation initiation factor aIF2 can substitute for eukaryotic eIF2 in ribosomal scanning during mammalian 48s complex formation. J. Mol. Biol. 2011, 413, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Raijmakers, R.; Egberts, W.V.; van Venrooij, W.J.; Pruijn, G.J.M. Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. J. Mol. Biol. 2002, 323, 653–663. [Google Scholar] [CrossRef]
- McDonald, S.M.; Close, D.; Xin, H.; Formosa, T.; Hill, C.P. Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding. Mol. Cell 2010, 40, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Kiely, C.M.; Marguerat, S.; Garcia, J.F.; Madhani, H.D.; Bähler, J.; Winston, F. Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol. 2011, 31, 4193–4204. [Google Scholar] [CrossRef] [PubMed]
- Lorentzen, E.; Basquin, J.; Tomecki, R.; Dziembowski, A.; Conti, E. Structure of the Active Subunit of the Yeast Exosome Core, Rrp44: Diverse Modes of Substrate Recruitment in the RNase II Nuclease Family. Mol. Cell 2008, 29, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, R.; Max, K.E.A.; Heinemann, U.; Balbach, J. RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. RNA 2012, 18, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Koppensteiner, W.A.; Lackner, P.; Wiederstein, M.; Sippl, M.J. Characterization of novel proteins based on known protein structures. J. Mol. Biol. 2000, 296, 1139–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carugo, O. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. J. Appl. Crystallogr. 2003, 36, 125–128. [Google Scholar] [CrossRef]
- Li, Z.; Natarajan, P.; Ye, Y.; Hrabe, T.; Godzik, A. POSA: A user-driven, interactive multiple protein structure alignment server. Nucleic Acids Res. 2014, 42, W240–W245. [Google Scholar] [CrossRef]
- Braberg, H.; Webb, B.M.; Tjioe, E.; Pieper, U.; Sali, A.; Madhusudhan, M.S. SALIGN: A web server for alignment of multiple protein sequences and structures. Bioinformatics 2012, 28, 2072–2073. [Google Scholar] [CrossRef]
- Jamroz, M.; Kolinski, A.; Kihara, D. Structural features that predict real-value fluctuations of globular proteins. Proteins 2012, 80, 1425–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Dunker, A.K.; Lawson, J.D.; Brown, C.J.; Williams, R.M.; Romero, P.; Oh, J.S.; Oldfield, C.J.; Campen, A.M.; Ratliff, C.M.; Hipps, K.W.; et al. Intrinsically disordered proteins. J. Mol. Graph. Model. 2001, 19, 26–59. [Google Scholar] [CrossRef]
- Campen, A.; Williams, R.M.; Brown, C.J.; Meng, J.; Uversky, V.N.; Dunker, A.K. TOP-IDP-scale: A new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 2008, 15, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, D.; Yamashita, S.; Tomita, K. Molecular insights into replication initiation by Qβ replicase using ribosomal protein S1. Nucleic Acids Res. 2014, 42, 10809–10822. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, T.; Carmichael, G.G. RNA Replication: Function and Structure of QBeta-Replicase. Annu. Rev. Biochem. 1979, 48, 525–548. [Google Scholar] [CrossRef] [PubMed]
- Loveland, A.B.; Korostelev, A.A. Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM. Methods 2018, 137, 55–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckert, B.; Turk, M.; Czech, A.; Berninghausen, O.; Beckmann, R.; Ignatova, Z.; Plitzko, J.M.; Wilson, D.N. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 2018, 3, 1115–1121. [Google Scholar] [CrossRef]
- Sengupta, J.; Agrawal, R.K.; Frank, J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc. Natl. Acad. Sci. USA 2001, 98, 11991–11996. [Google Scholar] [CrossRef] [Green Version]
- Boni, I.V.; Artamonova, V.S.; Dreyfus, M. The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. J. Bacteriol. 2000, 182, 5872–5879. [Google Scholar] [CrossRef]
- Machulin, A.; Deryusheva, E.; Lobanov, M.; Galzitskaya, O. Repeats in S1 Proteins: Flexibility and Tendency for Intrinsic Disorder. Int. J. Mol. Sci. 2019, 20, 2377. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Perez-Iratxeta, C.; Ponting, C.P. Protein Repeats: Structures, Functions, and Evolution. J. Struct. Biol. 2001, 134, 117–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Gippert, G.P.; Soman, K.V.; Case, D.A.; Wright, P.E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 1989, 245, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, M.R.; Wojtowicz, W.M.; Andre, I.; Qian, B.; Wu, W.; Baker, D.; Eisenberg, D.; Zipursky, S.L. A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell 2008, 134, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Elkins, P.A.; Ho, Y.S.; Smith, W.W.; Janson, C.A.; D’Alessio, K.J.; McQueney, M.S.; Cummings, M.D.; Romanic, A.M. Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1182–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Daniel, W.W. Kruskal–Wallis one-way analysis of variance by ranks. In Applied Nonparametric Statistics; PWS-Kent: Boston, MA, USA, 1990; pp. 226–234. ISBN 0-534-91976-6. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Protein Name | Source Organism | PDB Codes | Resolution | S1 Domain Function |
---|---|---|---|---|
Polynucleotide phosphorylase | E. coli | 1sro | NMR | Promoting the initial, reversible interaction between PNPase and single-stranded RNA |
Caulobacter vibrioides | 4aim | 3.3Å (X-ray diffraction) | ||
Transcription termination/antitermination protein NusA | Thermotoga maritima | 1hh2 | 2.1Å (X-ray diffraction) | After initial baiting of the mRNA, the S1 may pick out regulatory sequences or combinations of signals what leads to superimposition of specific binding sites on an area that nonspecifically attracts RNA |
E. coli | 5lm9 | 2.14Å (X-ray diffraction) | ||
Ribonuclease R | E. coli | 5xgu | 1.85Å (X-ray diffraction) | S1 domain are required for binding of duplex RNA |
Ribonuclease E | E. coli | 5f6c | 3Å (X-ray diffraction) | Bound RNA with the 5`-sensor domain |
RNase II | E. coli | 2ix0 | 2.44Å (X-ray diffraction) | RNA fragment is located in the anchor region in a deep cleft between the two CSDs and the S1 domain (loop L45 of S1) |
Transcription accessory protein, Tex | Pseudomonas aeruginosa | 3bzc | 2.27Å (X-ray diffraction) | Tex S1 domain is required for this binding activity with a preference for ssRNA |
General stress protein 13 | Bacillus subtilis | 2k4k | NMR | May can act similarly to cold shock proteins in response to cold stress |
Protein Name | Source Organism | PDB Codes | Resolution | S1 Domain Function |
---|---|---|---|---|
Eukaryotic translation initiation factor 2 subunit alpha | Saccharomyces cerevisiae | 1q46 | 2.86Å (X-ray diffraction) | Exact function is not yet defined |
Protein RRP5 homolog | Homo sapiens | 1wi5 | NMR | |
ATP-dependent RNA helicase DHX8 | H. sapiens | 2eqs | NMR | |
Nucleolar protein of 40 kDa | H. sapiens | 2cqo | NMR | |
Exosome complex exonuclease DIS3 | S. cerevisiae | 2wp8 | 3Å (X-ray diffraction) | 3`end of the RNA is threaded past the S1/KH domains and through the central channel to a catalytic site |
RNA polymerase II subunit G | H. sapiens | 6gmh | 3.1Å (Electron Microscopy) | Exiting RNA traverses a positively charged groove formed between the SPT6 S1 and the YqgF/RuvC domains |
Exosome complex exonuclease RRP44 | H. sapiens | 6h25 | 3.8Å (Electron Microscopy) | RNA enters from the apical opening between the CSD lobe and the S1 domain |
RNA polymerase II subunit | Komagataella phaffii | 6ir9 | 3.8Å (Electron Microscopy) | Exact function is not yet defined |
DNA-directed RNA polymerase II subunit RPB7 | S. cerevisiae | 4a3g | 3.5Å (X-ray diffraction) | |
Exosome complex component RRP40 | H. sapiens | 2nn6 | 3.35Å (X-ray diffraction) |
Protein Name | Source Organism | PDB Codes | Resolution | S1 Domain Function |
---|---|---|---|---|
Exosome complex component Rrp4 | Archaeoglobus fulgidus | 2ba0 | 2.7Å (X-ray diffraction) | S1 domains and a subsequent neck in the RNase-PH domain ring form an RNA entry pore to the processing chamber that only allows access of unstructured RNA |
Aeropyrum pernix | 2z0s | 3.2Å (X-ray diffraction) | Exact function is not yet defined | |
Exosome complex component Csl4 | Saccharolobus solfataricus | 3l7z | 2.41Å (X-ray diffraction) | S1 and KH domains to move away from the central channel and thus increases the diameter of the pore opening for RNA |
Translation initiation factor IF-2 subunit alpha | Pyrococcus abyssi | 1yz6 | 3.37Å (X-ray diffraction) | RNA binding site is formed by the concave side of the S1 barrel |
Pyrococcus horikoshii | 3aev | 2.8Å (X-ray diffraction) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deryusheva, E.I.; Machulin, A.V.; Matyunin, M.A.; Galzitskaya, O.V. Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure. Molecules 2019, 24, 3681. https://doi.org/10.3390/molecules24203681
Deryusheva EI, Machulin AV, Matyunin MA, Galzitskaya OV. Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure. Molecules. 2019; 24(20):3681. https://doi.org/10.3390/molecules24203681
Chicago/Turabian StyleDeryusheva, Evgenia I., Andrey V. Machulin, Maxim A. Matyunin, and Oxana V. Galzitskaya. 2019. "Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure" Molecules 24, no. 20: 3681. https://doi.org/10.3390/molecules24203681
APA StyleDeryusheva, E. I., Machulin, A. V., Matyunin, M. A., & Galzitskaya, O. V. (2019). Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure. Molecules, 24(20), 3681. https://doi.org/10.3390/molecules24203681