An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies
Abstract
:1. Introduction
2. Epoxides
2.1. Natural Epoxides Containing Products and Biological Activities
2.2. Synthetic Strategies Used in Total Synthesis of Epoxides Containing Natural Products
2.3. Recent Advances in Epoxidation
3. Oxetanes
3.1. Natural Oxetanes Containing Products and Biological Activities
3.2. Synthesis Strategies Used in the Total Synthesis of Oxetanes Containing Natural Products
3.3. Recent Advances in Oxetane Synthesis
4. Tetrahydrofurans
4.1. Natural THF-Containing Products and Biological Activities
4.2. Synthesis Strategies Used in Total Synthesis of THFs Containing Natural Products
4.3. Recent Advances in THF Synthesis
5. Tetrahydropyrans
5.1. Natural THPs Containing Products and Biological Activities
5.2. Synthesis Strategies Used in the Total Synthesis of THP-Containing Natural Products
5.3. Recent Advances in THP Synthesis
6. Oxepanes
6.1. Natural Oxepane-Containing Products and Biological Activities
6.2. Synthesis Strategies Used in the Total Synthesis of Oxepane-Containing Natural Products
6.3. Recent Advances in Oxepane Synthesis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, T.; Padron, J.I.; Martin, V.S. Strategies for the synthesis of cyclic ethers of marine natural products. Synlett 2014, 25, 12–32. [Google Scholar] [CrossRef]
- Marco-Contelles, J.; Molina, M.T.; Anjum, S. Naturally occurring cyclohexane epoxides: Sources, biological activities, and synthesis. Chem. Rev. 2004, 104, 2857–2900. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.; Rateb, M.E.; Hassan, M.H.; Sayed, A.M.; Shabana, S.; Raslan, M.; Amin, E.; Behery, F.A.; Ahmed, O.M.; Bin Muhsinah, A.; et al. New Antiproliferative Cembrane Diterpenes from the Red Sea Sarcophyton Species. Mar. Drugs 2019, 17, 411. [Google Scholar] [CrossRef]
- Davis, R.L.; Stiller, J.; Naicker, T.; Jiang, H.; Jørgensen, K.A. Asymmetric organocatalytic epoxidations: Reactions, scope, mechanisms, and applications. Angew. Chem. Int. Ed. 2014, 53, 7406–7426. [Google Scholar] [CrossRef]
- da Silva, A.R.; dos Santos, D.A.; Paixão, M.W.; Corrêa, A.G. Stereoselective Multicomponent Reactions in the Synthesis or Transformations of Epoxides and Aziridines. Molecules 2019, 24, 630. [Google Scholar] [CrossRef]
- Shen, J.; He, C. Isolation and Purification of Triptolide from the Leaves of Tripterygium wilfordii Hook F. Chin. J. Chem. Eng. 2010, 18, 750–754. [Google Scholar] [CrossRef]
- Gu, W.-Z.; Chen, R.; Brandwein, S.; McAlpine, J.; Burres, N. Isolation, purification, and characterization of immunosuppressive compounds from tripterygium: Triptolide and tripdiolide. Int. J. Immunopharmacol. 1995, 17, 351–356. [Google Scholar] [CrossRef]
- Ye, H.; Ignatova, S.; Luo, H.; Li, Y.; Peng, A.; Chen, L.; Sutherland, I. Preparative separation of a terpenoid and alkaloids from Tripterygium wilfordii Hook. f. using high-performance counter-current chromatography: Comparison of various elution and operating strategies. J. Chromatogr. A 2008, 1213, 145–153. [Google Scholar] [CrossRef]
- Hewitson, P.; Ignatova, S.; Ye, H.; Chen, L.; Sutherland, I. Intermittent counter-current extraction as an alternative approach to purification of Chinese herbal medicine. J. Chromatogr. A 2009, 1216, 4187–4192. [Google Scholar] [CrossRef]
- Ziaei, S.; Halaby, R. Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J. Phytomed. 2016, 6, 149–164. [Google Scholar] [PubMed]
- Wang, X.; Matta, R.; Shen, G.; Nelin, L.D.; Pei, D.; Liu, Y. Mechanism of triptolide-induced apoptosis: Effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide. J. Mol. Med. 2006, 84, 405. [Google Scholar] [CrossRef] [PubMed]
- Noel, P.; Von Hoff, D.D.; Saluja, A.K.; Velagapudi, M.; Borazanci, E.; Han, H. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol. Sci. 2019, 40, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Luo, L.; Liu, F.; Zou, D.; Zhu, S.; Tan, B.; Chen, T. Anti-cancer and Sensibilisation Effect of Triptolide on Human Epithelial Ovarian Cancer. J. Cancer 2016, 7, 2093–2099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Huang, G.; Wang, H.; Li, X.; Wang, X.; Feng, Y.; Tan, B.; Chen, T. Inhibition effect of triptolide on human epithelial ovarian cancer via adjusting cellular immunity and angiogenesis. Oncol. Rep. 2018, 39, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Song, J.M.; Molla, K.; Anandharaj, A.; Cornax, I.; OSullivan, M.G.; Kirtane, A.R.; Panyam, J.; Kassie, F. Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling. Oncotarget 2017, 8, 26927–26940. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.; Dong, L.; Qu, X.Y.; Tao, L.N.; Zhang, Y.M.; Zhai, J.H.; Song, Y.Q. Triptolide induces autophagy and apoptosis through ERK activation in human breast cancer MCF-7 cells. Exp Ther Med. 2018, 15, 3413–3419. [Google Scholar] [CrossRef]
- Chugh, R.; Sangwan, V.; Patil, S.P.; Dudeja, V.; Dawra, R.K.; Banerjee, S.; Schumacher, R.J.; Blazar, B.R.; Georg, G.I.; Vickers, S.M. A preclinical evaluation of Minnelide as a therapeutic agent against pancreatic cancer. Sci. Transl. Med. 2012, 4, 156ra139. [Google Scholar] [CrossRef]
- Propper, D.; Han, H.; Hoff, D.V.; Borazanci, E.; Reya, T.; Ghergurovich, J.; Pshenichnaya, I.; Antal, C.; Condjella, R.; Sharma, S. Abstract CT165: Phase II open label trial of minnelide™ in patients with chemotherapy refractory metastatic pancreatic cancer. Cancer Res. 2019, 79, CT165. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, G.D.; Zou, J.; He, R.R.; Qin, S.Y.; Hu, D.; Li, G.Q.; Guo, L.D.; Yao, X.S.; Gao, H. Dimericbiscognienyne A: A Meroterpenoid Dimer from Biscogniauxia sp. with New Skeleton and Its Activity. Org. Lett. 2017, 19, 38–41. [Google Scholar] [CrossRef]
- Loesgen, S.; Bruhn, T.; Meindl, K.; Dix, I.; Schulz, B.; Zeeck, A.; Bringmann, G. (+)-Flavipucine, the Missing Member of the Pyridione Epoxide Family of Fungal Antibiotics. Eur. J. Org. Chem. 2011, 2011, 5156–5162. [Google Scholar] [CrossRef]
- Girotra, N.; Patchett, A.; Zimmerman, S.; Achimov, D.; Wendler, N. Synthesis and biological activity of flavipucine analogs. J. Med. Chem. 1980, 23, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Anke, H.; Besla, H.; Sterner, O. Flavipucine and brunnescin, two antibiotics from cultures of the mycophilic fungus Cladobotryum rubrobrunnescens. Z. Naturforsch. C 1995, 50, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, Y.; Mizutani, S.; Kamo, S.; Yoshimoto, T.; Tomoshige, S.; Kawasaki, T.; Takasawa, R.; Tsubaki, K.; Kuramochi, K. Synthesis, antibacterial and cytotoxic evaluation of flavipucine and its derivatives. Bioorg. Med. Chem. Lett. 2019, 29, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, S.; Shindo, C.; Shigetomi, K.; Miyamoto, T.; Ubukata, M. (+)-Epogymnolactam, a novel autophagy inducer from mycelial culture of Gymnopus sp. Phytochemistry 2015, 114, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.K.T.; Hensens, O.D.; Ransom, R.; Giacobbe, R.A.; Polishook, J.; Zink, D. L-755,807, A new non-peptide bradykinin binding inhibitor from an endophytic Microsphaeropsis sp. Tetrahedron 1996, 52, 1481–1486. [Google Scholar] [CrossRef]
- Tanaka, K., 3rd; Kobayashi, K.; Kogen, H. Total Synthesis of (-)-L-755,807: Establishment of Relative and Absolute Configurations. Org. Lett. 2016, 18, 1920–1923. [Google Scholar] [CrossRef]
- Tanaka, K.; Honma, Y.; Yamaguchi, C.; Aoki, L.; Saito, M.; Suzuki, M.; Arahata, K.; Kinoshita, K.; Koyama, K.; Kobayashi, K. Total synthesis, stereochemical assignment, and biological evaluation of L-755,807. Tetrahedron 2019, 75, 1085–1097. [Google Scholar] [CrossRef]
- Hoffmann, H.; Kogler, H.; Heyse, W.; Matter, H.; Caspers, M.; Schummer, D.; Klemke-Jahn, C.; Bauer, A.; Penarier, G.; Debussche, L. Discovery, Structure Elucidation, and Biological Characterization of Nannocystin A, a Macrocyclic Myxobacterial Metabolite with Potent Antiproliferative Properties. Angew. Chem. 2015, 54, 10145–10148. [Google Scholar] [CrossRef]
- Krastel, P.; Roggo, S.; Schirle, M.; Ross, N.T.; Perruccio, F.; Aspesi, P., Jr.; Aust, T.; Buntin, K.; Estoppey, D.; Liechty, B. Nannocystin A: An Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties. Angew. Chem. 2015, 54, 10149–10154. [Google Scholar] [CrossRef]
- Liao, L.; Zhou, J.; Xu, Z.; Ye, T. Concise Total Synthesis of Nannocystin A. Angew. Chem. 2016, 55, 13263–13266. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, Z. Total Syntheses of Nannocystins A and A0, Two Elongation Factor 1 Inhibitors. Org. Lett. 2016, 18, 4702–4705. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, X.; Yang, C.-H.; Tian, Y.; Chen, X.; Lian, L.; Pan, W.; Su, X.; Zhang, W.; Chen, Y. Total Synthesis of Nannocystin A. Org. Lett. 2016, 18, 5768–5770. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hu, P.; He, Y. Asymmetric Total Synthesis of Nannocystin A. J. Org. Chem. 2017, 82, 9217–9222. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, X.; Ding, Y.; Hao, X.; Bai, Y.; Tang, Y.; Zhang, X.; Li, Q.; Yang, Z.; Zhang, W. Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R,3S)-Epoxide in nannocystin A. Eur. J. Med. Chem. 2018, 150, 626–632. [Google Scholar] [CrossRef]
- Limnios, D.; Kokotos, C. 2, 2, 2-Trifluoroacetophenone: An organocatalyst for an environmentally friendly epoxidation of alkenes. J. Org. Chem. 2014, 79, 4270–4276. [Google Scholar] [CrossRef]
- Wójtowicz-Młochowska, H. Synthetic utility of metal catalyzed hydrogen peroxide oxidation of CH, CC and C= C bonds in alkanes, arenes and alkenes: Recent advances. Arkivoc 2017, 2017, 12–58. [Google Scholar] [CrossRef]
- Wang, C.; Yamamoto, H. Asymmetric epoxidation using hydrogen peroxide as oxidant. Chem. Asian J. 2015, 10, 2056–2068. [Google Scholar] [CrossRef]
- Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chénedé, A. Asymmetric Hydroxylative Phenol Dearomatization through In Situ Generation of Iodanes from Chiral Iodoarenes and m-CPBA. Angew. Chem. 2009, 48, 4605–4609. [Google Scholar] [CrossRef]
- Yang, D.; Ye, X.-Y.; Xu, M. Enantioselective Total Synthesis of (−)-Triptolide, (−)-Triptonide, (+)-Triptophenolide, and (+)-Triptoquinonide. J. Org. Chem. 2000, 65, 2208–2217. [Google Scholar] [CrossRef]
- Xu, H.; Tang, H.; Feng, H.; Li, Y. Divergent total synthesis of triptolide, triptonide, tripdiolide, 16-hydroxytriptolide, and their analogues. J. Org. Chem. 2014, 79, 10110–10122. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tang, H.; Yang, Z.; Feng, H.; Li, Y. Synthesis and biological evaluation of 20-hydroxytriptonide and its analogues. Tetrahedron 2014, 70, 3107–3115. [Google Scholar] [CrossRef]
- Goncalves, S.; Hellier, P.; Nicolas, M.; Wagner, A.; Baati, R. Diastereoselective formal total synthesis of (+/-)-triptolide via a novel cationic cyclization of 2-alkenyl-1,3-dithiolane. ChemComm 2010, 46, 5778–5780. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.D.; Li, L.Q.; Li, M.M.; Geng, H.C.; Qin, H.B. Catalytic Asymmetric Formal Total Synthesis of (-)-Triptophenolide and (+)-Triptolide. Nat. Prod. Bioprospect 2016, 6, 183–186. [Google Scholar] [CrossRef]
- Yang, D.; Ye, X.-Y.; Xu, M.; Pang, K.-W.; Zou, N.; Letcher, R.M. A Concise Total Synthesis of Triptolide. J. Org. Chem. 1998, 63, 6446–6447. [Google Scholar] [CrossRef]
- Tanaka, K.; Kobayashi, K.; Takatori, K.; Kogen, H. Efficient synthesis of syn -α-alkoxy epoxide via a diastereoselective Darzens reaction. Tetrahedron 2017, 73, 2062–2067. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Siva, A.; Ramaswamy Chidambaram, R. A highly enantioselective asymmetric Darzens reaction catalysed by proline based efficient organocatalysts for the synthesis of di- and tri-substituted epoxides. ChemComm 2017, 53, 10926–10929. [Google Scholar] [CrossRef]
- Li, B.; Li, C. Darzens reaction rate enhancement using aqueous media leading to a high level of kinetically controlled diastereoselective synthesis of steroidal epoxyketones. J. Org. Chem. 2014, 79, 8271–8277. [Google Scholar] [CrossRef]
- Day, D.P.; Sellars, P.B. Recent Advances in Iminium-Salt-Catalysed Asymmetric Epoxidation. Eur. J. Org. Chem. 2017, 2017, 1034–1044. [Google Scholar] [CrossRef]
- Heravi, M.M.; Lashaki, T.B.; Poorahmad, N. Applications of Sharpless asymmetric epoxidation in total synthesis. Tetrahedron: Asymmetry 2015, 26, 405–495. [Google Scholar] [CrossRef]
- Ramesh, P.; Reddy, Y.N. A three-step total synthesis of goniothalesdiol A using a one-pot Sharpless epoxidation/regioselective epoxide ring-opening. Tetrahedron Lett. 2017, 58, 1037–1039. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Q.; Cornwall, R.G.; Shi, Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem. Rev. 2014, 114, 8199–8256. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Shang, S.; Chen, B.; Li, G.; Wang, L.; Ren, L.; Gao, S. Asymmetric epoxidation of olefins with hydrogen peroxide by an in situ-formed manganese complex. J. Org. Chem. 2014, 79, 6688–6694. [Google Scholar] [CrossRef] [PubMed]
- Noji, M.; Kobayashi, T.; Uechi, Y.; Kikuchi, A.; Kondo, H.; Sugiyama, S.; Ishii, K. Asymmetric Epoxidation of Allylic Alcohols Catalyzed by Vanadium–Binaphthylbishydroxamic Acid Complex. J. Org. Chem. 2015, 80, 3203–3210. [Google Scholar] [CrossRef]
- Noji, M.; Kondo, H.; Yazaki, C.; Yamaguchi, H.; Ohkura, S.; Takanami, T. An immobilized vanadium-binaphthylbishydroxamic acid complex as a reusable catalyst for the asymmetric epoxidation of allylic alcohols. Tetrahedron Lett. 2019, 60, 1518–1521. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Nakano, K.; Hosoya, K.; Orihara, T.; Yamanaka, M.; Odagi, M.; Nagasawa, K. Asymmetric Epoxidation of 1, 4-Naphthoquinones Catalyzed by Guanidine–Urea Bifunctional Organocatalyst. Org. Lett. 2018, 20, 2811–2815. [Google Scholar] [CrossRef]
- Wuitschik, G.; Carreira, E.M.; Wagner, B.; Fischer, H.; Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Muller, K. Oxetanes in drug discovery: Structural and synthetic insights. J. Med. Chem. 2010, 53, 3227–3246. [Google Scholar] [CrossRef]
- Burkhard, J.A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Carreira, E.M. Oxetanes as versatile elements in drug discovery and synthesis. Angew. Chem. 2010, 49, 9052–9067. [Google Scholar] [CrossRef]
- Mahal, A. Oxetanes as versatile building blocks in the total synthesis of natural products: An overview. Eur. J. Chem. 2015, 6, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.A.; Croft, R.A.; Davis, O.A.; Doran, R.; Morgan, K.F. Oxetanes: Recent advances in synthesis, reactivity, and medicinal chemistry. Chem. Rev. 2016, 116, 12150–12233. [Google Scholar] [CrossRef]
- Fraguas-Sánchez, A.; Martín-Sabroso, C.; Fernández-Carballido, A.; Torres-Suárez, A. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol. 2019, 84, 289–706. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Chen, J.; Xie, F.; Bao, W.; Xu, H.; Wang, H.; Xu, Y.; Du, Z. Herceptin-conjugated paclitaxel loaded PCL-PEG worm-like nanocrystal micelles for the combinatorial treatment of HER2-positive breast cancer. Biomaterials 2019, 222, 119420. [Google Scholar] [CrossRef] [PubMed]
- Shetti, D.; Zhang, B.; Fan, C.; Mo, C.; Lee, B.H.; Wei, K. Low Dose of Paclitaxel Combined with XAV939 Attenuates Metastasis, Angiogenesis and Growth in Breast Cancer by Suppressing Wnt Signaling. Cells 2019, 8, 892. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.; Elsheikh, M.A.; Khalifa, A.; Elnaggar, Y.S. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J. Control. Release 2019, 311–312, 125–137. [Google Scholar] [CrossRef]
- Cong, J.; Liu, R.; Hou, J.; Wang, X.; Jiang, H.; Wang, J. Therapeutic effect of bevacizumab combined with paclitaxel and carboplatin on recurrent ovarian cancer. JBUON 2019, 24, 1003–1008. [Google Scholar]
- Park, G.-B.; Jeong, J.-Y.; Kim, D. Gliotoxin Enhances Autophagic Cell Death via the DAPK1-TAp63 Signaling Pathway in Paclitaxel-Resistant Ovarian Cancer Cells. Mar. Drugs 2019, 17, 412. [Google Scholar] [CrossRef]
- Morgensztern, D.; Karaseva, N.; Felip, E.; Delgado, I.; Burdaeva, O.; Dómine, M.; Lara, P.; Paik, P.K.; Lassen, U.; Orlov, S. An open-label phase IB study to evaluate GSK3052230 in combination with paclitaxel and carboplatin, or docetaxel, in FGFR1-amplified non-small cell lung cancer. Lung Cancer 2019, 136, 74–79. [Google Scholar] [CrossRef]
- Villaruz, L.C.; Cobo, M.; Syrigos, K.; Mavroudis, D.; Zhang, W.; Kim, J.S.; Socinski, M.A. A phase II study of nab-paclitaxel and carboplatin chemotherapy plus necitumumab in the first-line treatment of patients with stage IV squamous non-small cell lung cancer. Lung Cancer 2019, 136, 52–56. [Google Scholar] [CrossRef]
- Wang, J.P.; Yan, J.P.; Xu, J.; Yin, T.H.; Zheng, R.Q.; Wang, W. Paclitaxel-loaded nanobubble targeted to pro-gastrin-releasing peptide inhibits the growth of small cell lung cancer. Cancer Manag. Res. 2019, 11, 6637–6649. [Google Scholar] [CrossRef]
- Liu, J.J.; Ho, J.Y.; Lee, H.W.; Baik, M.W.; Kim, O.; Choi, Y.J.; Hur, S.Y. Inhibition of Phosphatidylinositol 3-kinase (PI3K) Signaling Synergistically Potentiates Antitumor Efficacy of Paclitaxel and Overcomes Paclitaxel-Mediated Resistance in Cervical Cancer. Int. J. Mol. Sci. 2019, 20, 3383. [Google Scholar] [CrossRef]
- Suzuki, K.; Nagao, S.; Shibutani, T.; Yamamoto, K.; Jimi, T.; Yano, H.; Kitai, M.; Shiozaki, T.; Matsuoka, K.; Yamaguchi, S. Phase II trial of paclitaxel, carboplatin, and bevacizumab for advanced or recurrent cervical cancer. Gynecol. Oncol. 2019, 154, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Flores-Villaseñor, S.E.; Peralta-Rodríguez, R.D.; Padilla-Vaca, F.; Meléndez-Ortiz, H.I.; Ramirez-Contreras, J.C.; Franco, B. Preparation of Peppermint Oil-Based Nanodevices Loaded with Paclitaxel: Cytotoxic and Apoptosis Studies in HeLa Cells. AAPS PharmSciTech 2019, 20, 198. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.M.; Yokoyama, R.; Yang, C.S.; Fukuyama, Y. Merrilactone A, a novel neurotrophic sesquiterpene dilactone from Illicium merrillianum. Tetrahedron Lett. 2000, 41, 6111–6114. [Google Scholar] [CrossRef]
- Li, C.; Lee, D.; Graf, T.N.; Phifer, S.S.; Nakanishi, Y.; Burgess, J.P.; Riswan, S.; Setyowati, F.M.; Saribi, A.M.; Soejarto, D.D. A Hexacyclic ent-Trachylobane Diterpenoid Possessing an Oxetane Ring from Mitrephora glabra. Org. Lett. 2005, 7, 5709–5712. [Google Scholar] [CrossRef] [PubMed]
- Hugelshofer, C.L.; Magauer, T. A Bioinspired Cyclization Sequence Enables the Asymmetric Total Synthesis of Dictyoxetane. J. Am. Chem. Soc. 2016, 138, 6420–6423. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.P.; Agger, J.; Wong, L.S. Paternò–Büchi Reaction as a Demonstration of Chemical Kinetics and Synthetic Photochemistry Using a Light Emitting Diode Apparatus. J. Chem. Educ. 2015, 92, 1716–1720. [Google Scholar] [CrossRef]
- Birman, V.B.; Danishefsky, S.J. The Total Synthesis of (±)-Merrilactone A. J. Am. Chem. Soc. 2002, 124, 2080–2081. [Google Scholar] [CrossRef]
- Inoue, M.; Sato, T.; Hirama, M. Total synthesis of merrilactone A. J. Am. Chem. Soc. 2003, 125, 10772–10773. [Google Scholar] [CrossRef]
- Inoue, M.; Lee, N.; Kasuya, S.; Sato, T.; Hirama, M.; Moriyama, M.; Fukuyama, Y. Total synthesis and bioactivity of an unnatural enantiomer of merrilactone a: Development of an enantioselective desymmetrization strategy. J. Org. Chem. 2007, 72, 3065–3075. [Google Scholar] [CrossRef]
- Nazef, N.; Davies, R.D.; Greaney, M.F. Formal Synthesis of Merrilactone A Using a Domino Cyanide 1, 4-Addition–Aldol Cyclization. Org. Lett. 2012, 14, 3720–3723. [Google Scholar] [CrossRef]
- Chen, J.; Gao, P.; Yu, F.; Yang, Y.; Zhu, S.; Zhai, H. Total Synthesis of (±)-Merrilactone A. Angew. Chem. 2012, 51, 5897–5899. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, B. Synthesis of (+/−)-Merrilactone A by a Desymmetrization Strategy. Chemistry 2018, 24, 16511–16515. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.J.; Schneider, M.; Brandstatter, M.; Krautwald, S.; Carreira, E.M. Total Synthesis of (-)-Mitrephorone A. J. Am. Chem. Soc. 2018, 140, 16704–16710. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.A.; Lee, W.; Krische, M.J. Enantioselective Synthesis of Oxetanes Bearing All-Carbon Quaternary Stereocenters via Iridium-Catalyzed C−C Bond-Forming Transfer Hydrogenation. Chem. Eur. J. 2017, 23, 2557–2559. [Google Scholar] [CrossRef] [PubMed]
- Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Alvarez, M. Tetrahydrofuran-containing macrolides: A fascinating gift from the deep sea. Chem. Rev. 2013, 113, 4567–4610. [Google Scholar] [CrossRef] [PubMed]
- Torre, A.; Cuyamendous, C.; Bultel-Poncé, V.; Durand, T.; Galano, J.M.; Oger, C. Recent advances in the synthesis of tetrahydrofurans and applications in total synthesis. Terahedorn 2016, 33, 5003–5025. [Google Scholar] [CrossRef]
- Chen, L.Y.; Chen, J.R.; Cheng, H.G.; Lu, L.Q.; Xiao, W.J. Enantioselective Synthesis of Tetrahydrofuran Derivatives by Sequential Henry Reaction and Iodocyclization of γ, δ-Unsaturated Alcohols. Eur. J. Org. Chem. 2014, 2014, 4714–4719. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Ao, H.; Bi, D.; Han, M.; Guo, Y.; Wang, X. Folate-targeting annonaceous acetogenins nanosuspensions: Significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Deliv. 2018, 25, 880–887. [Google Scholar] [CrossRef]
- Bermejo, A.; Figadère, B.; Zafra-Polo, M.-C.; Barrachina, I.; Estornell, E.; Cortes, D. Acetogenins from Annonaceae: Recent progress in isolation, synthesis and mechanisms of action. Nat. Pro. Rep. 2005, 22, 269–303. [Google Scholar] [CrossRef]
- Liaw, C.C.; Wu, T.Y.; Chang, F.R.; Wu, Y.C. Historic perspectives on Annonaceous acetogenins from the chemical bench to preclinical trials. Planta Medica 2010, 76, 1390–1404. [Google Scholar] [CrossRef]
- Hernández-Fuentes, G.A.; García-Argáez, A.N.; Peraza Campos, A.L.; Delgado-Enciso, I.; Muñiz-Valencia, R.; Martínez-Martínez, F.J.; Toninello, A.; Gómez-Sandoval, Z.; Mojica-Sánchez, J.P.; Dalla Via, L. Cytotoxic Acetogenins from the Roots of Annona purpurea. Int. J. Mol. Sci. 2019, 20, 1870. [Google Scholar] [CrossRef]
- Juang, S.H.; Chiang, C.Y.; Liang, F.P.; Chan, H.H.; Yang, J.S.; Wang, S.H.; Lin, Y.C.; Kuo, P.C.; Shen, M.R.; Thang, T.D. Mechanistic Study of Tetrahydrofuran-acetogenins In Triggering Endoplasmic Reticulum Stress Response-apotoposis in Human Nasopharyngeal Carcinoma. Sci. Rep. 2016, 6, 39251. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.-G.; Li, M.; Lin, M.-B.; Li, L.; Liu, Y.-B.; Qu, J.; Li, Y.; Wang, X.-J.; Wang, R.-B.; Xu, S. Illisimonin A, a Caged Sesquiterpenoid with a Tricyclo[5.2.1.01,6]decane Skeleton from the Fruits of Illicium simonsii. Org. Lett. 2017, 19, 6160–6163. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, B. Stereoselective Synthesis of a Common 3-Oxabicyclo[3.2.0]heptan-2-one Core Building Block Toward Illicium Sesquiterpenes via Desymmetrization. Chem. Res. Chin. Univ. 2018, 34, 867–870. [Google Scholar] [CrossRef]
- Burns, A.S.; Rychnovsky, S.D. Total Synthesis and Structure Revision of (−)-Illisimonin A, a Neuroprotective Sesquiterpenoid from the Fruits of Illicium simonsii. J. Am. Chem. Soc. 2019, 141, 13295–13300. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Ortiz, G.A.; Cerda-García-Rojas, C.M.; Fragoso-Serrano, M.; Pereda-Miranda, R. Complementarity of DFT Calculations, NMR Anisotropy, and ECD for the Configurational Analysis of Brevipolides K–O from Hyptis brevipes. J. Nat. Prod. 2017, 80, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Tsuda, M.; Masuda, A. Iriomoteolide-2a, a Cytotoxic 23-Membered Macrolide from Marine Benthic Dinoflagellate Amphidinium Species. Heterocycles 2015, 91, 265–274. [Google Scholar] [CrossRef]
- Shiva Raju, K.; Sabitha, G. First stereoselective total synthesis of brevipolide M. Org. Biomol. Chem. 2017, 15, 6393–6400. [Google Scholar] [CrossRef]
- Sakamoto, K.; Hakamata, A.; Tsuda, M.; Fuwa, H. Total Synthesis and Stereochemical Revision of Iriomoteolide-2a. Angew. Chem. Int. Ed. Engl. 2018, 57, 3801–3805. [Google Scholar] [CrossRef]
- Sakamoto, K.; Hakamata, A.; Iwasaki, A.; Suenaga, K.; Tsuda, M.; Fuwa, H. Total Synthesis, Stereochemical Revision, and Biological Assessment of Iriomoteolide-2a. Chemistry 2019, 25, 8528–8542. [Google Scholar] [CrossRef]
- Lindsay, V.N.; Viart, H.l.n.M.-F.; Sarpong, R. Stereodivergent intramolecular C (sp3)–H functionalization of azavinyl carbenes: Synthesis of saturated heterocycles and fused N-heterotricycles. J. Am. Chem. Soc. 2015, 137, 8368–8371. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lin, L.; Chen, W.; Wu, W.; Liu, X.; Feng, X. Synthesis of chiral tetrahydrofurans via catalytic asymmetric [3+ 2] cycloaddition of heterosubstituted alkenes with oxiranes. J. Org. Chem. 2016, 81, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Bae, H.Y.; List, B. Can a ketone be more reactive than an aldehyde? Catalytic asymmetric synthesis of substituted tetrahydrofurans. Angew. Chem. Int. Ed. Engl. 2018, 57, 12162–12166. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.M.; Ermanis, K.; Clarke, A.P. Strategies for the construction of tetrahydropyran rings in the synthesis of natural products. Org. Biomol. Chem. 2014, 12, 3323–3335. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Brindisi, M. Achmatowicz reaction and its application in the syntheses of bioactive molecules. RSC Adv. 2016, 6, 111564–111598. [Google Scholar] [CrossRef] [Green Version]
- Antoszczak, M.; Huczyński, A. Salinomycin and its derivatives–A new class of multiple-targeted “magic bullets”. Eur. J. Med. Chem. 2019, 176, 208–227. [Google Scholar] [CrossRef]
- Markowska, A.; Kaysiewicz, J.; Markowska, J.; Huczyński, A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg. Med. Chem. Lett. 2019, 29, 1549–1554. [Google Scholar] [CrossRef]
- Tyagi, M.; Patro, B.S. Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicol. In Vitro 2019, 60, 125–133. [Google Scholar] [CrossRef]
- Dewangan, J.; Srivastava, S.; Mishra, S.; Divakar, A.; Kumar, S.; Rath, S.K. Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo. Biochem. Pharmacol. 2019, 164, 326–335. [Google Scholar] [CrossRef]
- Yang, X.W.; Yang, C.P.; Jiang, L.P.; Qin, X.J.; Liu, Y.P.; Shen, Q.S.; Chen, Y.B.; Luo, X.D. Indole Alkaloids with New Skeleton Activating Neural Stem Cells. Org. Lett. 2014, 16, 5808–5811. [Google Scholar] [CrossRef]
- Mason, J.D.; Weinreb, S.M. Synthesis of Alstoscholarisines A–E, Monoterpene Indole Alkaloids with Modulating Effects on Neural Stem Cells. J. Org. Chem. 2018, 83, 5877–5896. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Kong, L.Y.; Wang, X.B.; Zhang, Y.M.; Li, R.J.; Yang, M.H.; Luo, J.G. Nitric oxide inhibitory activity and absolute configurations of arylalkenyl α, β-unsaturated δ/γ-lactones from Cryptocarya concinna. J. Nat. Prod. 2016, 79, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Della-Felice, F.; Sarotti, A.M.; Pilli, R. Catalytic Asymmetric Synthesis and Stereochemical Revision of (+)-Cryptoconcatone H. J. Org. Chem. 2017, 82, 9191–9197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Tong, R. Synthetic Approaches to 2, 6-trans-Tetrahydropyrans. Synthesis 2017, 49, 4899–4916. [Google Scholar] [CrossRef]
- Zhao, L.M.; Dou, F.; Sun, R.; Zhang, A. Regioselective Synthesis of Substituted Tetrahydrofurans through Prins Cyclization. Synlett 2014, 25, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.S.; Swathi, V.; Bhadra, M.P.; Raju, M.K.; Kunwar, A. Tandem vinylcyclopropane ring opening/Prins cyclization for the synthesis of 2, 3-disubstituted tetrahydropyrans. Tetrahedron Lett. 2016, 57, 1889–1891. [Google Scholar] [CrossRef]
- Millán, A.; Smith, J.R.; Chen, J.L.Y.; Aggarwal, V.K. Tandem Allylboration–Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (−)-Clavosolide A. Angew. Chem. 2016, 55, 2498–2502. [Google Scholar] [CrossRef]
- Han, X.; Peh, G.; Floreancig, P.E. Prins-Type Cyclization Reactions in Natural Product Synthesis. Eur. J. Org. Chem. 2013, 2013, 1193–1208. [Google Scholar] [CrossRef]
- Vetica, F.; Chauhan, P.; Dochain, S.; Enders, D. Asymmetric organocatalytic methods for the synthesis of tetrahydropyrans and their application in total synthesis. Chem. Soc. Rev. 2017, 46, 1661–1674. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; He, Y.; Gao, L.; Song, Z. TMSBr/InBr3-promoted Prins cyclization/homobromination of dienyl alcohol with aldehyde to construct cis-THP containing an exocyclic E-alkene. ChemComm 2015, 51, 14925–14928. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, H.; Li, H.; Gao, L.; Song, Z. Total Synthesis of (−)-Exiguolide. Org. Lett. 2015, 17, 4706–4709. [Google Scholar] [CrossRef] [PubMed]
- Loy, R.N.; Jacobsen, E.N. Enantioselective Intramolecular Openings of Oxetanes Catalyzed by (salen)Co(III) Complexes: Access to Enantioenriched Tetrahydrofurans. J. Am. Chem. Soc. 2009, 131, 2786–2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, J.S.; Singh, V.K.; Srihari, P. Formation of Substituted Tetrahydropyrans through Oxetane Ring Opening: Application to the Synthesis of C1–C17 Fragment of Salinomycin. Org. Lett. 2014, 16, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, B.; Reddy, D.S.; Mallampudi, N.A.; Mohapatra, D.K.J.O.l. A General Diastereoselective Strategy for Both cis-and trans-2, 6-Disubstituted Tetrahydropyrans: Formal Total Synthesis of (+)-Muconin. Org. Lett. 2018, 20, 6910–6914. [Google Scholar] [CrossRef]
- Alvarez-Mendez, S.J.; Farina-Ramos, M.; Villalba, M.L.; Perretti, M.D.; Garcia, C.; Moujir, L.M.; Ramirez, M.A.; Martin, V.S. Stereoselective Synthesis of Highly Substituted Tetrahydropyrans through an Evans Aldol-Prins Strategy. J. Org. Chem. 2018, 83, 9039–9066. [Google Scholar] [CrossRef]
- Reekie, T.A.; Kavanagh, M.E.; Longworth, M.; Kassiou, M. Synthesis of Biologically Active Seven-Membered-Ring Heterocycles. Synthesis 2013, 45, 3211–3227. [Google Scholar] [CrossRef]
- Barbero, H.; Diez-Poza, C.; Barbero, A. The Oxepane Motif in Marine Drugs. Mar. Drugs 2017, 15. [Google Scholar] [CrossRef]
- Wang, W.; Song, T.; Chai, W.; Chen, L.; Chen, L.; Lian, X.Y.; Zhang, Z. Rare Polyene-polyol Macrolides from Mangrove-derived Streptomyces sp. ZQ4BG. Sci. Rep. 2017, 7, 1703. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Chen, Y.W.; Huang, C.Y.; Tseng, Y.J.; Lin, C.C.; Dai, C.F.; Wu, Y.C.; Sheu, J.H. Isolation and Structure Elucidation of Cembranoids from a Dongsha Atoll Soft Coral Sarcophyton stellatum. Mar. Drugs 2018, 16. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, N.; Sun, W.; Duan, X.; Zhang, Q.; Zhou, Q.; Chen, C.; Zhu, H.; Luo, Z.; Liu, J.; et al. Bioactive polycyclic polyprenylated acylphloroglucinols from Hypericum perforatum. Org. Biomol. Chem. 2018, 16, 8130–8143. [Google Scholar] [CrossRef]
- Hernández-Torres, G.; Mateo, J.; Colobert, F.; Urbano, A.; Carreño, M.C. Synthesis of Medium-Sized 2,ω-cis-Disubstituted Cyclic Ethers by Reductive Cyclization of Hydroxy Ketones. ChemistrySelect 2016, 1, 4101–4107. [Google Scholar] [CrossRef]
- Armbrust, K.W.; Beaver, M.G.; Jamison, T.F. Rhodium-Catalyzed Endo-Selective Epoxide-Opening Cascades: Formal Synthesis of (−)-Brevisin. J. Am. Chem. Soc. 2015, 137, 6941–6946. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, Y.; Li, M.; Lu, J.; Jin, N.; Fan, B. Synthesis of cyclic ethers by cyclodehydration of 1, n-diols using heteropoly acids as catalysts. Royal Soc. Open Sci. 2018, 5, 180740. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Harmalkar, D.S.; Choi, Y.; Lee, K. An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules 2019, 24, 3778. https://doi.org/10.3390/molecules24203778
Lu Q, Harmalkar DS, Choi Y, Lee K. An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules. 2019; 24(20):3778. https://doi.org/10.3390/molecules24203778
Chicago/Turabian StyleLu, Qili, Dipesh S. Harmalkar, Yongseok Choi, and Kyeong Lee. 2019. "An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies" Molecules 24, no. 20: 3778. https://doi.org/10.3390/molecules24203778
APA StyleLu, Q., Harmalkar, D. S., Choi, Y., & Lee, K. (2019). An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules, 24(20), 3778. https://doi.org/10.3390/molecules24203778