1,2-Benzenedithiol and Toluene-3,4-dithiol Arsenic(III) Complexes—Synthesis, Structure, Spectroscopic Characterization and Toxicological Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Description of the Prepared Complexes Molecular and Crystal Structures
2.3. DFT Modelled Molecular Structures
2.4. Spectroscopic Characterization of the Arsenic(III) Compounds
2.5. Cytotoxicity
3. Materials and Methods
3.1. Preparation of the Complexes
3.1.1. Iodo-(benzene-1,2-dithiolato-S,S’)-arsenic(III)—AsI(PhS2) (1)
3.1.2. Bromo-(benzene-1,2-dithiolato-S,S’)-arsenic(III)—AsBr(PhS2) (2)
3.1.3. Iodo-(toluene-3,4-dithiolato-S,S’)-arsenic(III)—AsI(MePhS2) (3)
3.1.4. Bromo-(toluene-3,4-dithiolato-S,S’)-arsenic(III)—AsBr(MePhS2) (4)
3.2. X-ray Crystallography
3.3. Computational Details
3.4. Cytotoxicity Studies
3.5. Statistical Analysis
4. Conclusions and Summary
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Florea, A.M.; Yamoah, E.N.; Dopp, E. Intracellular calcium disturbs induced by arsenic and its met hylated derivatives in relation to genomic damage and apoptosis induction. Environ. Health Perspect. 2005, 113, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.H.; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of Action of Arsenic Trioxide. Cancer Res. 2002, 62, 3893–3903. [Google Scholar] [PubMed]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.; Voegtin, C. Arsenic Derivatives of Cysteine. J. Biol. Chem. 1930, 89, 27–31. [Google Scholar]
- Ochi, T.; Kaise, T.; Oya-Ohta, Y. Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia 1994, 50, 115–120. [Google Scholar] [CrossRef]
- Delnomdedieu, M.; Basti, M.M.; Otvos, J.D.; Thomas, D.J. Reduction and binding of arsenate and dimethylarsinate by gluthation: a magnetic resonance study. Chem.- Biol. Int. 1994, 90, 139–155. [Google Scholar] [CrossRef]
- Yang, C.-H.; Kuo, M.-L.; Chen, J.-C.; Chen, Y.-C. Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. Br. J. Cancer 1999, 81, 796–799. [Google Scholar] [CrossRef] [Green Version]
- Cea-Olivares, R.; Toscano, R.A.; Lopez, M.; Garcia, P. Coordination ability of the heterocycles 1,3-dithia-2-arsa- and -stiba-cyclopentanes towards sulfur containing ligands, Part II. Diheterocyclic dithiocarbamate complexes. X-ray structure of the 4-morpholinecarbodithioate of 1,3-dithia-2-arsa-cyclopentane. Monatsh. Chem. 1993, 124, 177–183. [Google Scholar] [CrossRef]
- Garje, S.S.; Jain, V.K.; Tiekink, E.R.T. Synthesis and characterisation of organoarsenic(III) xanthates and dithiocarbamates. X-ray crystal structures of RAs(S2CNEt2)2, R = Me and Ph. J. Organomet. Chem. 1997, 538, 129–134. [Google Scholar] [CrossRef]
- Wenclawiak, B.W.; Uttich, S.; Deiseroth, H.J.; Schmitz, D. Studies on bulky residual group substituted arsenic(III) dithiocarbamate structures. Inorg. Chim. Acta 2003, 348, 1–7. [Google Scholar] [CrossRef]
- Chen, D.; Lai, C.S.; Tiekink, E.R.T. Tris(N,N-dimethyldithiocarbamato)arsenic(III) dichloromethane solvate. Appl. Organomet. Chem. 2003, 17, 813–814. [Google Scholar] [CrossRef]
- Liu, Y.; Tiekink, E.R.T. Crystal structure of tris(pyrrolinedithiocarbamato)arsenic(III), As[S2CN(CH2)4]3. Z. Kristallogr. -New Cryst. Struct. 2005, 220, 339–341. [Google Scholar] [CrossRef]
- Chauhan, H.P.S.; Kori, K.; Shaik, N.M.; Mathur, S.; Huch, V. Dialkyldithiocarbamate derivatives of toluene-3,4-dithiolato arsenic(III) and -bismuth(III): synthetic, spectral and single crystal X-ray structural studies. Polyhedron 2005, 24, 89–95. [Google Scholar] [CrossRef]
- Li, F.; Yin, H.; Zhai, J.; Wang, D. Tris(N,N-diethylcarbamato-κ2S,S′)arsenic(III). Acta Crystallogr. E 2006, 62, m2205–m2207. [Google Scholar] [CrossRef]
- Hoskins, B.F.; Tiekink, E.R.T.; Winter, G. Structural features of group V A xanthates. The crystal and molecular structures of tris(O-isopropylxanthato-arsenic(III), -antimony(III) and -bismuth(III). Inorg. Chim. Acta 1985, 99, 177–182. [Google Scholar] [CrossRef]
- Burford, N.; Parks, T.M.; Royan, B.W.; Borecka, B.; Cameron, T.S.; Richardson, J.F.; Gabe, E.J.; Hynes, R. Aza- and thiaarsolidinium cations: novel structural features for carbene analogues. J. Am. Chem. Soc. 1992, 114, 8147–8153. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Bakus, R.C., II; Parkin, S.; Atwood, D.A. Structural characteristics of 2-halo-1,3,2-dithiarsenic compounds and tris-(pentafluorophenylthio)-arsen. J. Organomet. Chem. 2006, 691, 1825–1833. [Google Scholar] [CrossRef]
- DeGraffenreid, A.J.; Feng, Y.; Wycoff, D.E.; Morrow, R.; Phipps, M.D.; Cutler, C.S.; Ketring, A.R.; Barnes, C.L.; Jurisson, S.S. Dithiol aryl arsenic compounds as potential diagnostic and therapeutic radiopharmaceuticals. Inorg. Chem. 2016, 55, 8091–8098. [Google Scholar] [CrossRef]
- Lindquist, N.R.; Carter, T.G.; Cangelosi, V.M.; Zakharov, L.N.; Johnson, D.W. Three’s company: co-crystallization of a self-assembled S4 metallacyclophane with two diastereomeric metallacycle intermediates. Chem. Commun. 2010, 46, 3505–3507. [Google Scholar] [CrossRef]
- Pappalardo, G.C.; Chakravorty, R.; Irgolic, K.J.; Meyers, E.A. Tris(phenylthio)arsine, C18H15AsS3. Acta Crystallogr. C 1983, 39, 1618–1620. [Google Scholar] [CrossRef]
- Carter, T.G.; Healey, E.R.; Pitt, M.A.; Johnson, D.W. Secondary bonding interactions observed in two arsenic thiolate complexes. Inorg. Chem. 2005, 44, 9634–9636. [Google Scholar] [CrossRef] [PubMed]
- Cangelosi, V.M.; Pitt, M.A.; Vickaryous, W.J.; Allen, C.A.; Zakharov, L.N.; Johnson, D.W. Design considerations for the group 15 elements: The pnictogen···π interaction as a complementary component in supramolecular assembly design. Cryst. Growth Des. 2010, 10, 3531–3536. [Google Scholar] [CrossRef]
- Ioannou, P.V.; Moushi, E.E. The crystal structure of tris(4-aminophenylthio)arsine, As(SC6H4-4-NH2)3. Main Group Chem. 2013, 12, 285–292. [Google Scholar]
- Tran, T.T.P.; Ould, D.M.C.; Wilkins, L.C.; Wright, D.S.; Melen, R.L.; Rawson, J.M. Supramolecular aggregation in dithia-arsoles: chlorides, cations and N-centred paddlewheels. CrystEngComm 2017, 19, 4696–4699. [Google Scholar] [CrossRef]
- Kisenyi, J.M.; Willey, G.R.; Drew, M.G.B.; Wandiga, S.O. Toluene-3,4-dithiol (H2tdt) complexes of group 5B halides. Observations of lone-pair stereochemical activity and redox behaviour. Crystal and molecular structures of [AsCl(tdt)] and [PPh4][Sb(tdt)3]. J. Chem. Soc. Dalton Trans. 1985, 69–74. [Google Scholar] [CrossRef]
- Wang, J.-J.; Kryatova, O.P.; Rybak-Akimova, E.V.; Holm, R.H. Comparative kinetics and mechanism of oxygen and sulfur atom transfer reactions mediated by bis(dithiolene) complexes of molybdenum and tungsten. Inorg. Chem. 2004, 43, 8092–8101. [Google Scholar] [CrossRef]
- Maheshwari, S.; Bundela, K.; Ojha, K.G. Synthesis and spectroscopic characterization of toluene-3,4-dithiolatoarsenic(III)-O,O’-ditolyl/alkylene dithiophosphate compounds: crystal structure of [CH3C6H3S2As{S2P(OC6H4Me-m)2}]. J. Coord. Chem. 2014, 67, 1088–1096. [Google Scholar] [CrossRef]
- Ellison, P.A.; Barnhart, T.E.; Chen, F.; Hong, H.; Zhang, Y.; Theuer, C.P.; Cai, W.; Nickles, R.J.; DeJesus, O.T. High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjug. Chem. 2016, 27, 179–188. [Google Scholar] [CrossRef]
- Gonzalez-Montiel, S.; Andrade-Lopez, N.; Alvarado-Rodriguez, J.G. Synthesis, Characterisation and Properties of As-Monohalogenated Dibenzoarsocines S(C6H4S)2AsHal (Hal = Cl, Br, I) – A Study of the Transannular Interaction S→As. Eur. J. Inorg. Chem. 2006, 18, 3762–3768. [Google Scholar] [CrossRef]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 2009, 113, 5806–5812. [Google Scholar] [CrossRef]
- CSD codes: Z’=13 – NEHKUJ.; Z’=14 – GEQLUM04, OFUVUJ, OGUROZ01; Z’=15 – NABUOX.; Z’=16 - BIPCOS01, CHOEST01, CHOLES03, JIZFAB, LANBOS, NIJCER, NIKZUC, PUBMUU21, PUTKOE, UNADOD, VANFUO, VANJAY, VIXQOK, ZEFHEA.; Z’=17 – KEFSUM.; Z’=18 – HUVLAL, KETTUB, ZZZVXQ06; Z’=19 – HUGDOC.; Z’=20 – VUJBAE.; Z’=24 – IDOSID, OFEREZ, VIFXEQ.; Z’=32 – TMESNH.; Z’=56 – OGUROZ.
- Wang, Z.-Y. Arsenic compound as anticancer agents. Cancer Chemother. Pharmacol. 2001, 48 (Suppl. 1), 72–76. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Hori, S.; Nishitoh, H.; Ichijo, H.; Ogawa, O.; Kakehi, Y.; Kakizuka, A. Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res 2001, 61, 5432–5440. [Google Scholar] [PubMed]
- Shen, Z.Y.; Zhang, Y.; Chen, J.Y.; Chen, M.H.; Shen, J.; Luo, W.H.; Zeng, Y. Intratumoral injection of arsenic to enhance antitumor efficacy in human esophageal carcinoma cell xenografts. Oncol. Rep. 2004, 11, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, J.; Sagi, S.; Haj, A.; Harroch, J.; Fares, F. Arsenic trioxide inhibits the growth of human ovarian carcinoma cell line. Gynecol. Oncol. 2005, 99, 726–729. [Google Scholar] [CrossRef]
- Pettersson, H.M.; Pietras, A.; Munksgaard Persson, M.; Karlsson, J.; Johansson, L.; Shoshan, M.C.; Pahlman, S. Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells. Mol. Cancer Ther. 2009, 8, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Abudoureyimu, A.; Muhemaitibake, A. Arsenic trioxide regulates gastric cancer cell apoptosis by mediating cAMP. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 612–617. [Google Scholar]
- Gesundheit, B.; Malach, L.; Or, R.; Hahn, T. Neuroblastoma Cell Death is Induced by Inorganic Arsenic Trioxide (As2O3) and Inhibited by a Normal Human Bone Marrow Cell-Derived Factor. Cancer Microenviron. 2008, 1, 153–157. [Google Scholar] [CrossRef]
- Munshi, N.C. Arsenic Trioxide: An Emerging Therapy for Multiple Myeloma. Oncologist 2001, 6 (Suppl. 2), 17–21. [Google Scholar] [CrossRef]
- Murgo, A.J. Clinical Trials of Arsenic Trioxide in Hematologic and Solid Tumors: Overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 2001, 6 (Suppl. 2), 22–28. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, R.; Li, X.; Lu, C.; Fan, S.; Yang, B. The effect of arsenic trioxide on QT interval prolongation during APL therapy. Chin. Med. J. (Engl. ) 2003, 116, 1764–1766. [Google Scholar]
- Siu, C.-W.; Au, W.-Y.; Yung, C.; Kumana, C.R.; Lau, C.-P.; Kwong, Y.-L.; Tse, H.-F. Effects of oral arsenic trioxide therapy on QT intervals in patients with acute promyelocytic leukemia: implications for long-term cardiac safety. Blood 2006, 108, 103–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbey, J.T.; Pezzullo, J.C.; Soignet, S.L. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J. Clin. Oncol. 2003, 21, 3609–3615. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, X.; Wang, L.; Zhou, Z.; Kang, Y.J. Myocardial toxicity of arsenic trioxide in a mouse model. Cardiovasc. Toxicol. 2002, 1, 63–73. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Adamo, C.; Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- O’Boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Software news and updates cclib: A library for package-independent computational chemistry algorithms. J. Comp. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Pilip, A.; Rius, M.; Bruchertseifer, F.; Apostolidis, C.; Weis, M.; Bonelli, M.; Laurenza, M.; Królicki, L.; Morgenstern, A. In vitro evaluation of 225Ac-DOTA-Substance P for targeted alpha therapy of glioblastoma multiforme. Chem. Biol. Drug Design 2018, 92, 1344–1356. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, A.; Ahrens, H.; Feldmann, G.; Brossart, P.; Gaertner, F.C.; Fottner, C.; Weber, M.M.; Ahmadzadehfar, H.; Schreckenberger, M.; Miederer, M.; et al. Peptide Receptor Radionuclide Therapy Combined With Chemotherapy in Patients With Neuroendocrine Tumors. Clin. Nucl. Med. 2019, 44, e329–e335. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Compound | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Exp. | Calc. | Exp.* | Calc. | Exp. | Calc. | Exp. | Calc. | |
Bond lengths | ||||||||
As1-S1 | 2.218(1) | 2.252 | 2.212(3) | 2.243 | 2.216(1) | 2.250 | 2.208(1) | 2.245 |
As1-S2 | 2.227(1) | 2.252 | 2.210(3) | 2.246 | 2.212(1) | 2.252 | 2.205(1) | 2.242 |
As1-X | 2.730(1) | 2.700 | 2.467(1) | 2.421 | 2.699(1) | 2.704 | 2.469(1) | 2.423 |
S1-C1 | 1.764(5) | 1.779 | 1.759(9) | 1.778 | 1.752(4) | 1.779 | 1.757(2) | 1.779 |
S2-C2 | 1.763(4) | 1.779 | 1.759(9) | 1.779 | 1.762(5) | 1.779 | 1.761(2) | 1.779 |
Angles | ||||||||
X-As1-S1 | 98.69(4) | 103.27 | 100.81(7) | 101.91 | 103.32(4) | 103.40 | 102.96(1) | 101.66 |
X-As1-S2 | 106.10(4) | 103.29 | 100.83(7) | 101.57 | 101.31(4) | 103.22 | 100.86(1) | 101.76 |
S1-As1-S2 | 92.97(5) | 92.09 | 93.20(9) | 93.10 | 93.29(5) | 92.15 | 93.38(2) | 93.22 |
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Chemical formula | C6H4AsIS2 | C6H4AsBrS2 | C7H6AsIS2 | C7H6AsBrS2 |
Formula weight | 342.03 | 295.04 | 356.06 | 309.07 |
Temperature (K) | 100(2) | 100(2) | 100(2) | 100(2) |
λ [Cu or Mo Kα] (Å) | 0.71073 | 1.54184 | 1.54184 | 0.71073 |
Crystal system | triclinic | triclinic | monoclinic | monoclinic |
Space group | P | P | P 21/c | P 21/c |
a (Å) | 4.4828(4) | 16.1708(7) | 10.0491(3) | 9.77969(10) |
b (Å) | 9.3077(9) | 16.9940(6) | 12.1431(4) | 12.05914(14) |
c (Å) | 11.4679(11) | 21.9286(9) | 8.1564(3) | 8.09708(9) |
α (°) | 68.272(9) | 111.907(4) | 90.00 | 90.00 |
β (°) | 87.667(7) | 92.321(4) | 104.407(3) | 105.2034(11) |
γ (°) | 81.062(8) | 100.773(4) | 90.00 | 90.00 |
Volume (Å) | 439.03(7) | 5452.1(4) | 964.00(5) | 921.504(17) |
Z | 2 | 26 | 4 | 4 |
Dcalc (g·cm−3) | 2.587 | 2.336 | 2.453 | 2.228 |
µ (mm−1) | 7.783 | 15.056 | 33.429 | 8.407 |
F (000) | 316 | 3640 | 664 | 592 |
Crystal size (mm) | 0.10 × 0.06 × 0.03 | 0.20 × 0.12 × 0.08 | 0.20 × 0.18 × 0.06 | 0.18 × 0.16 × 0.08 |
Reflections collected | 5438 | 46,507 | 9744 | 49,374 |
Independent reflections | 2112 | 18,509 | 1780 | 2445 |
Rint | 0.0688 | 0.0492 | 0.0618 | 0.0365 |
Data/restraints/parameters | 2112/0/91 | 18,509/0/1141 | 1780/0/101 | 2445/0/101 |
GOF(F2) | 1.077 | 1.071 | 1.077 | 1.090 |
Final R indices [I > 2σ(I)] | R1 = 0.0389 wR2 = 0.0871 | R1 = 0.0669 wR2 = 0.1998 | R1 = 0.0386 wR2 = 0.1066 | R1 = 0.0172 wR2 = 0.0374 |
R indices (all data) | R1 = 0.0455 wR2 = 0.0913 | R1 = 0.0974 wR2 = 0.2440 | R1 = 0.0387 wR2 = 0.1068 | R1 = 0.0184 wR2 = 0.0378 |
Largest difference in peak/hole (e·Å−3) | 1.548/−1.776 | 1.636/−3.382 | 2.570/−1.781 | 1.365/−0.577 |
Compound | Calculated | Experimental | ||
---|---|---|---|---|
λ (nm) | Oscillator Strength | Main Components | λ (nm) | |
1 | 381.49 | 0.1485 | H→L (94.2%) | 370 |
355.05 | 0.0055 | H − 1→L (94.2%) | ||
342.02 | 0.0086 | H − 2→L (98.7%) | ||
332.22 | 0.0031 | H→L + 1 (95.6%) | ||
2 | 345.16 | 0.0686 | H→L (88.4%) | 331 |
H→L + 2 (9.6%) | ||||
310.46 | 0.0060 | H − 1→L (85.8%) | ||
H→L + 1 (8.7%) | ||||
301.80 | 0.0640 | H→L + 2 (84.6%) | ||
H→L (8.3%) | ||||
3 | 392.75 | 0.1447 | H→L (94.9%) | 375 |
358.86 | 0.0082 | H − 1→L (93.2%) | ||
342.56 | 0.0079 | H − 2→L (98.6%) | ||
338.15 | 0.0041 | H→L + 1 (95.6%) | ||
4 | 354.59 | 0.0676 | H→L (89.2%) | 336 |
H→L + 2 (9.0%) | ||||
314.95 | 0.0052 | H − 1→L (87.0%) | ||
H→L + 1 (5.2%) | ||||
308.52 | 0.0700 | H→L + 2 (84.7%) | ||
H→L (7.8%) |
Compound | MO | As | X | LB |
---|---|---|---|---|
1 | LUMO + 1 | 64 | 2 | 34 |
LUMO | 47 | 30 | 23 | |
HOMO | 3 | 16 | 81 | |
HOMO − 1 | 0 | 18 | 82 | |
HOMO − 2 | 10 | 84 | 6 | |
2 | LUMO + 2 | 48 | 3 | 49 |
LUMO + 1 | 69 | 1 | 30 | |
LUMO | 46 | 27 | 27 | |
HOMO | 3 | 11 | 86 | |
HOMO − 1 | 0 | 5 | 95 | |
3 | LUMO + 1 | 64 | 2 | 34 |
LUMO | 48 | 29 | 23 | |
HOMO | 2 | 15 | 83 | |
HOMO − 1 | 0 | 15 | 85 | |
HOMO − 2 | 10 | 84 | 6 | |
4 | LUMO + 2 | 48 | 3 | 49 |
LUMO + 1 | 69 | 2 | 29 | |
LUMO | 47 | 27 | 26 | |
HOMO | 3 | 9 | 88 | |
HOMO − 1 | 0 | 5 | 95 |
Compound | IC50 [µM] |
---|---|
As2O3 | 1.43 ± 0.07 |
1 | 10.05 ± 0.31 |
2 | 10.28 ± 0.17 |
3 | 39.71 ± 0.15 |
4 | 39.87 ± 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyczko, M.; Lyczko, K.; Majkowska-Pilip, A.; Bilewicz, A. 1,2-Benzenedithiol and Toluene-3,4-dithiol Arsenic(III) Complexes—Synthesis, Structure, Spectroscopic Characterization and Toxicological Studies. Molecules 2019, 24, 3865. https://doi.org/10.3390/molecules24213865
Lyczko M, Lyczko K, Majkowska-Pilip A, Bilewicz A. 1,2-Benzenedithiol and Toluene-3,4-dithiol Arsenic(III) Complexes—Synthesis, Structure, Spectroscopic Characterization and Toxicological Studies. Molecules. 2019; 24(21):3865. https://doi.org/10.3390/molecules24213865
Chicago/Turabian StyleLyczko, Monika, Krzysztof Lyczko, Agnieszka Majkowska-Pilip, and Aleksander Bilewicz. 2019. "1,2-Benzenedithiol and Toluene-3,4-dithiol Arsenic(III) Complexes—Synthesis, Structure, Spectroscopic Characterization and Toxicological Studies" Molecules 24, no. 21: 3865. https://doi.org/10.3390/molecules24213865
APA StyleLyczko, M., Lyczko, K., Majkowska-Pilip, A., & Bilewicz, A. (2019). 1,2-Benzenedithiol and Toluene-3,4-dithiol Arsenic(III) Complexes—Synthesis, Structure, Spectroscopic Characterization and Toxicological Studies. Molecules, 24(21), 3865. https://doi.org/10.3390/molecules24213865