Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Components Identification of All Samples at Different Storage Periods
2.2. Differential Analysis of the Topographic Plots of Volatile Components in Jujube Fruits at Different Storage Periods
2.3. Fingerprints of VOCs in Jujube Fruits at Different Storage Periods
2.4. Changes of VOCs during Different Storage Periods
2.5. PCA of Jujube Fruits at Different Storage Periods
2.6. Cluster Analysis of VOCs of Jujube Fruits from Different Periods Based on the Heat Map
3. Materials and Methods
3.1. Experimental Materials
3.2. Apparatuses
3.3. HS-GC-IMS Analysis
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HS-GC-IMS | headspace-gas chromatography-ion mobility spectrometry |
DZ | Zizyphus jujuba Mill. cv. Dongzao |
JS | Zizyphus jujuba Mill. cv. Jinsixiaozao |
VOCs | volatile organic compounds |
PCA | PCA principal component analysis |
References
- Li, H.M.; Li, F.; Wang, L.; Sheng, J.C.; Xin, Z.H.; Zhao, L.Y.; Xiao, H.M.; Zheng, Y.H.; Hu, Q.H. Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem. 2009, 114, 547–552. [Google Scholar] [CrossRef]
- Hernández, F.; Legua, P.; Melgarejo, P.; Martínez, R.; Martínez, J.J. Phenological growth stages of jujube tree (Ziziphus jujube): Codification and description according to the BBCH scale. Ann. Appl. Biol. 2015, 166, 136–142. [Google Scholar] [CrossRef]
- Wojdyło, A.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube Mill.) fruits. Food Chem. 2016, 201, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Fan, L.P.; Ding, S.D.; Ding, X.L. Nutritional composition of five cultivars of Chinese jujube. Food Chem. 2007, 103, 454–460. [Google Scholar] [CrossRef]
- Choi, S.H.; Ahn, J.B.; Kozukue, N.; Levin, C.E.; Friedman, M. Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea. J. Agric. Food Chem. 2011, 59, 6594–6604. [Google Scholar] [CrossRef]
- Guo, S.; Duan, J.A.; Zhang, Y.; Qian, D.W.; Tang, Y.P.; Zhu, Z.H.; Wang, H.Q. Contents changes of triterpenic acids, nucleosides, nucleobases, and saccharides in jujube (Ziziphus jujuba) fruit during the drying and steaming process. Molecules 2015, 20, 22329–22340. [Google Scholar] [CrossRef]
- Liu, G.P.; Liu, X.Q.; Zhang, Y.C.; Zhang, F.; Wei, T.; Yang, M.; Wang, K.M.; Wang, Y.J.; Liu, N.; Cheng, H.L.; et al. Hepatoprotective effects of polysaccharides extracted from Zizyphus jujube cv. Huanghetanzao. Int. J. Biol. Macromol. 2015, 76, 169–175. [Google Scholar] [CrossRef]
- González-Gallego, J.; Sánchez-Campos, S.; Tuñón, M.J. Anti-inflammatory properties of dietary flavonoids. Nutr. Hosp. 2007, 22, 287–293. [Google Scholar]
- Ma, Q.; Wang, L.H.; Jiang, J.G. Hepatoprotective effect of flavonoids from Cirsium japonicum DC on hepatotoxicity in comparison with silymarin. Food Funct. 2016, 7, 2179–2184. [Google Scholar] [CrossRef]
- Liu, H.C.; Xu, M.D. Changes in quality characteristics of fresh-cut jujubes as affected by pressurized nitrogen treatment. Innov. Food Sci. Emerg. Technol. 2015, 30, 43–50. [Google Scholar] [CrossRef]
- Kou, X.H.; He, Y.L.; Li, Y.F.; Chen, X.Y.; Feng, Y.C.; Xue, Z.H. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the colour development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chem. 2019, 270, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Günther, C.S.; Marsh, K.B.; Winz, R.A.; Harker, R.F.; Wohlers, M.W.; White, A.; Goddard, M.R. The impact of cold storage and ethylene on volatile ester production and aroma perception in ‘Hort16A’ kiwifruit. Food Chem. 2015, 169, 5–12. [Google Scholar] [CrossRef]
- Both, V.; Brackmann, A.; Thewes, F.R.; de Freitas Ferreira, D.; Wagner, R. Effect of storage under extremely low oxygen on the volatile composition of ‘Royal Gala’ apples. Food Chem. 2014, 156, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Bandeira Reidel, R.V.; Melai, B.; Cioni, P.L.; Pistelli, L. Chemical composition of volatiles emitted by Ziziphus jujuba during different growth stages. Plant Biosyst. 2018, 152, 825–830. [Google Scholar] [CrossRef]
- Wang, H.; Li, P.; Sun, S.H.; Zhang, Q.D.; Su, Y.; Zong, Y.L.; Xie, J.P. Comparison of liquid-liquid extraction, simultaneous distillation extraction, ultrasound-assisted solvent extraction, and headspace solid-phase microextraction for the determination of volatile compounds in jujube extract by gas chromatography/mass spectrometry. Anal. Lett. 2014, 47, 654–674. [Google Scholar]
- Galindo, A.; Noguera-Artiaga, L.; Cruz, Z.N.; Burló, F.; Hernández, F.; Torrecillas, A.; Carbonell-Barrachina, Á.A. Sensory and physico-chemical quality attributes of jujube fruits as affected by crop load. LWT Food Sci. Technol. 2015, 63, 899–905. [Google Scholar] [CrossRef]
- Wang, R.R.; Ding, S.H.; Zhao, D.D.; Wang, Z.F.; Wu, J.H.; Hu, X.S. Effect of dehydration methods on antioxidant activities, phenolic contents, cyclic nucleotides, and volatiles of jujube fruits. Food Sci. Biotechnol. 2016, 25, 137–143. [Google Scholar] [CrossRef]
- Chen, K.; Gao, L.; Li, Q.; Li, H.R.; Zhang, Y. Effects of CO2 pretreatment on the volatile compounds of dried Chinese jujube (Zizyphus jujuba Miller). Food Sci. Technol. 2017, 37, 578–584. [Google Scholar] [CrossRef]
- Pu, Y.H.; Ding, T.; Lv, R.L.; Cheng, H.; Liu, D.H. Effect of drying and storage on the volatile compounds of jujube fruit detected by electronic nose and GC-MS. Food Sci. Technol. Res. 2018, 24, 1039–1047. [Google Scholar] [CrossRef]
- Wang, L.N.; Wang, Y.Q.; Wang, W.Z.; Zheng, F.P.; Chen, F. Comparison of volatile compositions of 15 different varieties of Chinese jujube (Ziziphus jujuba Mill.). J. Food Sci. Technol. 2019, 56, 1631–1640. [Google Scholar] [CrossRef]
- Zhang, L.X.; Shuai, Q.; Li, P.W.; Zhang, Q.; Ma, F.; Zhang, W.; Ding, X.X. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chem. 2016, 192, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Q.; Yang, R.W.; Zhang, H.; Wang, S.L.; Chen, D.; Lin, S.Y. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942. [Google Scholar] [CrossRef] [PubMed]
- Arce, L.; Gallegos, J.; Garrido, R.; Medina, L.M.; Sielemann, S.; Wortelmann, T. Ion mobility spectrometry a versatile analytical tool for metabolomics application in food science. Curr. Metab. 2014, 2, 264–271. [Google Scholar] [CrossRef]
- Wang, X.R.; Yang, S.P.; He, J.N.; Chen, L.Z.; Zhang, J.Z.; Jin, Y.; Zhou, J.H.; Zhang, Y.X. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry. Food Res. Int. 2019, 119, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696. [Google Scholar] [CrossRef]
- Makinen, M.A.; Anttalainen, O.A.; Sillanpää, M.E. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 2010, 82, 9594–9600. [Google Scholar] [CrossRef]
- Verkouteren, J.R.; Staymates, J.L. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples. Forensic Sci. Int. 2011, 206, 190–196. [Google Scholar] [CrossRef]
- De las Nieves Peiró, M.; Armenta, S.; Garrigues, S.; de la Guardia, M. Determination of 3, 4-methylenedioxypyrovalerone (MDPV) in oral and nasal fluids by ion mobility spectrometry. Anal. Bioanal. Chem. 2016, 408, 3265–3273. [Google Scholar] [CrossRef]
- Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M. Ion-mobility spectrometry for environmental analysis. TrAC Trends Anal. Chem. 2011, 30, 677–690. [Google Scholar] [CrossRef]
- Sun, X.; Gu, D.Y.; Fu, Q.B.; Gao, L.; Shi, C.H.; Zhang, R.T.; Qiao, X.G. Content variations in compositions and volatile component in jujube fruits during the blacking process. Food Sci. Nutr. 2019, 7, 1387–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Gómez, A.; Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; Arce, L. Use of a non-destructive sampling method for characterization of Iberian cured ham breed and feeding regime using GC-IMS. Meat Sci. 2019, 152, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Manzanares, N.; Martín-Gómez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs. spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2018, 246, 65–73. [Google Scholar] [CrossRef]
- Infante, R.; Farcuh, M.; Meneses, C. Monitoring the sensorial quality and aroma through an electronic nose in peaches during cold storage. J. Sci. Food Agric. 2008, 88, 2073–2078. [Google Scholar] [CrossRef]
- Rodríguez-Maecker, R.; Vyhmeister, E.; Meisen, S.; Martinez, A.R.; Kuklya, A.; Telgheder, U. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Anal. Bioanal. Chem. 2017, 409, 6595–6603. [Google Scholar] [CrossRef] [PubMed]
- Osorio, S.; Scossa, F.; Fernie, A. Molecular regulation of fruit ripening. Front. Plant Sci. 2013, 4, 198. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.G.; Gunaseelan, K.; Wang, M.Y.; Luo, L.K.; Wang, T.C.; Norling, C.L.; Johnston, S.L.; Maddumage, R.; Schröder, R.; Schaffer, R.J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J. Exp. Bot. 2011, 62, 3821–3835. [Google Scholar] [CrossRef]
- Xi, W.P.; Zheng, H.W.; Zhang, Q.Y.; Li, W.H. Profiling taste and aroma compound metabolism during apricot fruit development and ripening. Int. J. Mol. Sci. 2016, 17, 998. [Google Scholar] [CrossRef]
- Liu, T.T.; Yang, T.S. Optimization of solid-phase microextraction analysis for studying change of headspace flavor compounds of banana during ripening. J. Agric. Food Chem. 2002, 50, 653–657. [Google Scholar] [CrossRef]
- Lantsuzskaya, E.V.; Krisilov, A.V.; Levina, A.M. Structure of the cluster ions of ketones in the gas phase according to ion mobility spectrometry and ab initio calculations. Russ. J. Phys. Chem. A 2015, 89, 1838–1842. [Google Scholar] [CrossRef]
- Bengtsson, M.; Bäckman, A.C.; Liblikas, I.; Ramirez, M.I.; Borg-Karlson, A.K.; Ansebo, L.; Anderson, P.; Lofqvist, J.; Witzgall, P.; Bäckman, A.C.; et al. Plant odour analysis of apple: Antennal response of codling moth females to apple volatiles during phenological development. J. Agric. Food Chem. 2001, 49, 3736–3741. [Google Scholar] [CrossRef] [PubMed]
- Cano-Salazar, J.; López, M.L.; Crisosto, C.H.; Echeverría, G. Volatile compound emissions and sensory attributes of ‘Big Top’ nectarine and ‘Early Rich’ peach fruit in response to a pre-storage treatment before cold storage and subsequent shelf-life. Postharvest Biol. Technol. 2013, 76, 152–162. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Song, J.X.; Bi, J.F.; Meng, X.J.; Wu, X.Y. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cai, J.; Zhu, B.Q.; Wu, G.F.; Duan, C.Q.; Chen, G.; Shi, Y. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS. Food Chem. 2015, 177, 346–353. [Google Scholar] [CrossRef]
- Wang, L.N.; Zhu, J.C.; Wang, Y.Q.; Wang, X.; Chen, F.; Wang, X.W. Characterization of aroma-impact compounds in dry jujubes (Ziziphus jujube Mill.) by aroma extract dilution analysis (AEDA) and gas chromatography-mass spectrometer (GC-MS). Int. J. Food Prop. 2018, 21, 1844–1853. [Google Scholar] [CrossRef]
- Varlet, V.; Prost, C.; Serot, T. Volatile aldehydes in smoked fish: Analysis methods, occurrence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Bertolino, M.; Dolci, P.; Giordano, M.; Rolle, L.; Zeppa, G. Evolution of chemico-physical characteristics during manufacture and ripening of Castelmagno PDO cheese in wintertime. Food Chem. 2011, 129, 1001–1011. [Google Scholar] [CrossRef]
- Reineccius, G. Flavor Chemistry and Technology, 2nd ed.; Taylor and Francis Routledge: Boca Raton, FL, USA, 2006. [Google Scholar]
- Xiao, Z.B.; Liu, J.H.; Chen, F.; Wang, L.Y.; Niu, Y.W.; Feng, T.; Zhu, J.C. Comparison of aroma-active volatiles and their sensory characteristics of mangosteen wines prepared by Saccharomyces cerevisiae with GC-olfactometry and principal component analysis. Nat. Prod. Res. 2015, 29, 656–662. [Google Scholar] [CrossRef]
- Söllner, K.; Schieberle, P. Decoding the Key Aroma compounds of a Hungarian-type salami by molecular sensory science approaches. J. Agric. Food Chem. 2009, 57, 4319–4327. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, L.; Li, R.; Zhou, Q.; Wang, J.W.; Ji, S.J. Low temperature conditioning prevents loss of aroma-related esters from ‘Nanguo’ pears during ripening at room temperature. Postharvest Biol. Technol. 2015, 100, 23–32. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Luo, J.; Li, Q.M.; Li, J.; Liu, T.X.; Wang, R.; Chen, W.X.; Li, X.P. Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biol. Technol. 2018, 146, 68–78. [Google Scholar] [CrossRef]
- Zlatić, E.; Zadnik, V.; Fellman, J.; Demšar, L.; Hribar, J.; Čejić, Ž.; Vidrih, R. Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf-life. Postharvest Biol. Technol. 2016, 117, 71–80. [Google Scholar] [CrossRef]
- He, F.; Qian, Y.L.; Qian, M.C. Flavour and chiral stability of lemon-flavored hard tea during storage. Food Chem. 2018, 239, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Kava, V.; Latorre-García, L.; da Silva, G.J., Jr.; Pereira, R.G.; Glienke, C.; Ferreira-Maba, L.S.; Vicent, A.; Shimada, T.; Peña, L. Engineering d-limonene synthase down-regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence. Mol. Plant Pathol. 2018, 19, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Duan, C.Q.; Shi, Y.; Zhu, B.Q.; Javed, H.U.; Wang, J. Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method. Food Chem. 2017, 228, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Kremr, D.; Bajerová, P.; Bajer, T.; Eisner, A.; Adam, M.; Ventura, K. Using headspace solid-phase microextraction for comparison of volatile sulphur compounds of fresh plants belonging to families Alliaceae and Brassicaceae. J. Food Sci. Technol. 2015, 52, 5727–5735. [Google Scholar] [CrossRef]
- Mishra, P.K.; Tripathi, J.; Gupta, S.; Variyar, P.S. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality. Food Chem. 2017, 215, 401–409. [Google Scholar] [CrossRef]
- Müller, R.; Rappert, S. Pyrazines: Occurrence, formation and biodegradation. Appl. Microbiol. Biotechnol. 2010, 85, 1315–1320. [Google Scholar] [CrossRef]
- Jo, D.; Kim, G.R.; Yeo, S.H.; Jeong, Y.J.; Noh, B.S.; Kwon, J.H. Analysis of aroma compounds of commercial cider vinegars with different acidities using SPME/GC-MS, electronic nose, and sensory evaluation. Food Sci. Biotechnol. 2013, 22, 1559–1565. [Google Scholar] [CrossRef]
- Wu, Z.B.; Chen, L.Z.; Wu, L.M.; Xue, X.F.; Zhao, J.; Li, Y.; Ye, Z.H.; Lin, G.H. Classification of Chinese honeys according to their floral origins using elemental and stable isotopic compositions. J. Agric. Food Chem. 2015, 63, 5388–5394. [Google Scholar] [CrossRef]
- Li, J.; Di, T.J.; Bai, J.H. Distribution of volatile compounds in different fruit structures in four tomato cultivars. Molecules 2019, 24, 2594. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
NO. | Compound | CAS# | Formula | MW | RI | Rt (Sec) | Dt (RIP Relative) | Comment | Identification Approach |
---|---|---|---|---|---|---|---|---|---|
1 | Furfuryl alcohol | C98000 | C5H6O2 | 98.1 | 1661.4 | 1226.886 | 1.1116 | RI, Dt | |
2 | Octan-2-ol | C123966 | C8H18O | 130.2 | 1401.0 | 704.688 | 1.4313 | RI, Dt | |
3 | (E)-3-Hexen-1-ol | C928972 | C6H12O | 100.2 | 1327.8 | 562.241 | 1.2529 | RI, Dt | |
4 | 2-Butoxyethanol | C111762 | C6H14O2 | 118.2 | 1400.9 | 704.400 | 1.5715 | RI, Dt | |
5 | 2-Heptanol | C543497 | C7H16O | 116.2 | 1291.4 | 500.190 | 1.3920 | RI, Dt | |
6 | 1-Pentanol | C71410 | C5H12O | 88.1 | 1262.0 | 456.411 | 1.2576 | monomer | RI, Dt |
7 | 1-Pentanol | C71410 | C5H12O | 114.2 | 1262.0 | 456.411 | 1.5164 | dimer | RI, Dt |
8 | 2-Methyl-1-butanol | C137326 | C5H12O | 88.1 | 1215.7 | 397.445 | 1.2367 | RI, Dt | |
9 | 2-Hexanol | C626937 | C6H14O | 102.2 | 1194.9 | 374.160 | 1.2880 | RI, Dt | |
10 | 3-Methyl-2-butanol | C598754 | C5H12O | 88.1 | 1124.2 | 306.504 | 1.4417 | RI, Dt | |
11 | 2-Propanol | C67630 | C3H8O | 60.1 | 908.5 | 188.339 | 1.2264 | RI, Dt | |
12 | 2-Methyl-1-propanol | C78831 | C4H10O | 74.1 | 1090.2 | 279.704 | 1.3727 | RI, Dt | |
13 | Linalool | C78706 | C10H18O | 154.3 | 1496.8 | 896.913 | 1.2161 | RI, Dt | |
14 | Citronellol | C106229 | C10H20O | 156.3 | 1742.8 | 1390.307 | 1.3610 | RI, Dt | |
15 | 3-Octanol | C589980 | C8H18O | 130.2 | 1397.5 | 697.657 | 1.4073 | RI, Dt | |
16 | (E)-2-Octenal | C2548870 | C8H14O | 126.2 | 1438.5 | 779.930 | 1.3345 | RI, Dt | |
17 | (E)-2-Heptenal | C18829555 | C7H12O | 112.2 | 1326.9 | 560.684 | 1.6667 | RI, Dt | |
18 | Heptanal | C111717 | C7H14O | 114.2 | 1191.5 | 370.381 | 1.3412 | monomer | RI, Dt |
19 | Heptanal | C111717 | C7H14O | 114.2 | 1193.2 | 372.270 | 1.6841 | dimer | RI, Dt |
20 | 3-Methylbutanal | C590863 | C5H10O | 86.1 | 917.4 | 190.741 | 1.1796 | RI, Dt | |
21 | (E)-2-undecenal | C53448070 | C11H20O | 168.3 | 1736.9 | 1378.477 | 1.5700 | RI, Dt | |
22 | 5-Methylfurfural | C620020 | C6H6O2 | 110.1 | 1562.0 | 1027.52 | 1.4726 | RI, Dt | |
23 | 1-Octen-3-one | C4312996 | C8H14O | 126.2 | 1308.2 | 527.716 | 1.2773 | monomer | RI, Dt |
24 | 1-Octen-3-one | C4312996 | C8H14O | 126.2 | 1308.2 | 527.716 | 1.6826 | dimer | RI, Dt |
25 | 1-Hydroxypropan-2-one | C116096 | C3H6O2 | 74.1 | 1295.3 | 506.307 | 1.2352 | RI, Dt | |
26 | 3-Hydroxy-2-butanone | C513860 | C4H8O2 | 88.1 | 1298.6 | 511.779 | 1.0710 | monomer | RI, Dt |
27 | 3-Hydroxy-2-butanone | C513860 | C4H8O2 | 88.1 | 1295.5 | 506.629 | 1.3273 | dimer | RI, Dt |
28 | 2,3-Butanedione | C431038 | C4H6O2 | 86.1 | 1021.6 | 233.375 | 1.1507 | RI, Dt | |
29 | 3-Pentanone | C96220 | C5H10O | 86.1 | 989.2 | 215.961 | 1.3600 | RI, Dt | |
30 | 2-Methyl-3-heptanone | C13019200 | C8H16O | 128.2 | 1169.0 | 347.292 | 1.2730 | RI, Dt | |
31 | Ethyl octanoate | C106321 | C10H20O2 | 172.3 | 1401.0 | 704.688 | 1.4841 | RI, Dt | |
32 | Amyl acetate | C628637 | C7H14O2 | 130.2 | 1150.4 | 329.460 | 1.3196 | monomer | RI, Dt |
33 | Amyl acetate | C628637 | C7H14O2 | 130.2 | 1134.6 | 315.334 | 1.3240 | dimer | RI, Dt |
34 | Ethyl propanoate | C105373 | C5H10O2 | 102.1 | 942.6 | 197.947 | 1.1418 | monomer | RI, Dt |
35 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 866.3 | 176.930 | 1.3333 | RI, Dt | |
36 | Hexyl acetate | C142927 | C8H16O2 | 144.2 | 1230.8 | 415.502 | 1.4044 | RI, Dt | |
37 | Ethyl propanoate | C105373 | C5H10O2 | 102.1 | 964.6 | 205.502 | 1.4486 | dimer | RI, Dt |
38 | Propyl acetate | C109604 | C5H10O2 | 102.1 | 968.8 | 207.090 | 1.5065 | RI, Dt | |
39 | Ethyl isobutanoate | C97621 | C6H12O2 | 116.2 | 970.1 | 207.619 | 1.5604 | RI, Dt | |
40 | Methyl salicylate | C119368 | C8H8O3 | 152.1 | 1732.1 | 1368.733 | 1.2162 | RI, Dt | |
41 | 2-Methylpropanoic acid | C79312 | C4H8O2 | 88.1 | 1562.1 | 1027.802 | 1.1494 | RI, Dt | |
42 | 2-Methylbutanoic acid | C116530 | C5H10O2 | 102.1 | 1632.9 | 1169.846 | 1.2188 | RI, Dt | |
43 | 2-Ethylpyrazine | C13925003 | C6H8N2 | 108.1 | 1365.8 | 634.530 | 1.1116 | RI, Dt | |
44 | 2-Ethyl-6-methylpyrazine | C13925036 | C7H10N2 | 122.2 | 1345.4 | 594.936 | 1.1737 | RI, Dt | |
45 | Acetylpyrazine | C22047252 | C6H6N2O | 122.1 | 1654.4 | 1212.857 | 1.1463 | RI, Dt | |
46 | 2-Pentyl furan | C3777693 | C9H14O | 130.2 | 1253.1 | 444.179 | 1.2477 | RI, Dt | |
47 | 2-Ethylfuran | C3208160 | C6H8O | 96.1 | 975.6 | 209.900 | 1.0454 | RI, Dt | |
48 | Dimethyldisulphide | C624920 | C2H6S2 | 94.2 | 1074.6 | 268.202 | 1.1262 | RI, Dt | |
49 | Dimethyl sulfide | C75183 | C2H6S | 62.1 | 737.5 | 142.102 | 0.9636 | RI, Dt | |
50 | Dipropyl disulfide | C629196 | C6H14S2 | 150.3 | 1356.5 | 616.330 | 1.4603 | RI, Dt | |
51 | Diallyl sulfide | C592881 | C6H10S | 114.2 | 1118.4 | 301.687 | 1.1088 | RI, Dt | |
52 | Linalool oxide | C60047178 | C10H18O2 | 170.3 | 1417.2 | 737.207 | 1.2585 | RI, Dt | |
53 | 2-Methoxy-4-cresol | C93516 | C8H10O2 | 138.2 | 1921.7 | 1749.150 | 1.1921 | RI, Dt |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, J.; Wang, X.; Wang, R.; Ren, F.; Zhang, Q.; Shan, Y.; Ding, S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019, 24, 3904. https://doi.org/10.3390/molecules24213904
Yang L, Liu J, Wang X, Wang R, Ren F, Zhang Q, Shan Y, Ding S. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules. 2019; 24(21):3904. https://doi.org/10.3390/molecules24213904
Chicago/Turabian StyleYang, Lvzhu, Jie Liu, Xinyu Wang, Rongrong Wang, Fang Ren, Qun Zhang, Yang Shan, and Shenghua Ding. 2019. "Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry" Molecules 24, no. 21: 3904. https://doi.org/10.3390/molecules24213904
APA StyleYang, L., Liu, J., Wang, X., Wang, R., Ren, F., Zhang, Q., Shan, Y., & Ding, S. (2019). Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules, 24(21), 3904. https://doi.org/10.3390/molecules24213904