Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Analysis
3.3. Synthesis of Aminochalcones 1–8
3.3.1. Method I (Compounds 1–6, 10–18)
3.3.2. Method II (Compounds 7–9)
3.4. Anticancer Activity
3.5. Antimicrobial Activity
3.5.1. Microbial Growth Curve Calculation
3.5.2. Minimal Inhibitory Concentration (MIC) Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: Promising starting points for drug design. Molecules 2017, 22, 1210. [Google Scholar] [CrossRef] [PubMed]
- Moreira Osório, T.; Delle Monache, F.; Domeneghini Chiaradia, L.; Mascarello, A.; Regina Stumpf, T.; Roberto Zanetti, C.; Bardini Silveira, D.; Regina Monte Barardi, C.; De Fatima Albino Smânia, E.; Viancelli, A.; et al. Antibacterial activity of chalcones, hydrazones and oxadiazoles against methicillin-resistant Staphylococcus aureus. Bioorganic Med. Chem. Lett. 2012, 22, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, J.; Potaniec, B.; Żarowska, B.; Anioł, M. Microbial transformations of 4′-methylchalcones as an efficient method of obtaining novel alcohol and dihydrochalcone derivatives with antimicrobial activity. RSC Adv. 2018, 8, 30379–30386. [Google Scholar] [CrossRef]
- Mai, C.W.; Yaeghoobi, M.; Abd-Rahman, N.; Kang, Y.B.; Pichika, M.R. Chalcones with electron-withdrawing and electron-donating substituents: Anticancer activity against TRAIL resistant cancer cells, structure-activity relationship analysis and regulation of apoptotic proteins. Eur. J. Med. Chem. 2014, 77, 378–387. [Google Scholar] [CrossRef]
- Kar Mahapatra, D.; Kumar Bharti, S.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem. 2015, 98, 69–114. [Google Scholar] [CrossRef]
- Rybka, M.; Mercader, A.G.; Castro, E.A. Predictive QSAR study of chalcone derivatives cytotoxicity activity against HT-29 human colon adenocarcinoma cell lines. Chemom. Intell. Lab. Syst. 2014, 132, 18–29. [Google Scholar] [CrossRef]
- Chen, J.J.; Cheng, M.J.; Shu, C.W.; Sung, P.J.; Lim, Y.P.; Cheng, L.Y.; Wang, S.L.; Chen, L.C. A New Chalcone and Antioxidant Constituents of Glycyrrhiza glabra. Chem. Nat. Compd. 2017, 53, 632–634. [Google Scholar] [CrossRef]
- Vijaya Bhaskar Reddy, M.; Hung, H.Y.; Kuo, P.C.; Huang, G.J.; Chan, Y.Y.; Huang, S.C.; Wu, S.J.; Morris-Natschke, S.L.; Lee, K.H.; Wu, T.S. Synthesis and biological evaluation of chalcone, dihydrochalcone, and 1,3-diarylpropane analogs as anti-inflammatory agents. Bioorganic Med. Chem. Lett. 2017, 27, 1547–1550. [Google Scholar] [CrossRef]
- Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014, 85, 758–777. [Google Scholar] [CrossRef]
- Pati, H.N.; Holt, H.L.; LeBlanc, R.; Dickson, J.; Stewart, M.; Brown, T.; Lee, M. Synthesis and cytotoxic properties of nitro-and aminochalcones. Med. Chem. Res. 2005, 14, 19–25. [Google Scholar] [CrossRef]
- Tristão, T.C.; Campos-Buzzi, F.; Corrêa, R.; Cruz, R.C.B.; Cechinel Filho, V.; Bella Cruz, A. Antimicrobial and Cytotoxicity Potential of Acetamido, Amino and Nitrochalcones. Arzneimittelforschung 2012, 62, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, C.; Cai, Y.; Peng, J.; Liang, D.; Zhao, Y.; Yang, S.; Li, X.; Wu, X.; Liang, G. Synthesis and crystal structure of chalcones as well as on cytotoxicity and antibacterial properties. Med. Chem. Res. 2012, 21, 444–452. [Google Scholar] [CrossRef]
- Sulpizio, C.; Roller, A.; Giester, G.; Rompel, A. Synthesis, structure, and antioxidant activity of methoxy- and hydroxyl-substituted 2′-aminochalcones. Mon. Fur Chem. 2016, 147, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Prasad, Y.R.; Rani, V.J.; Rao, A.S. In vitro Antioxidant Activity and Scavenging Effects of Some Synthesized 4′-Aminochalcones. Asian J. Chem. 2013, 25, 52–58. [Google Scholar] [CrossRef]
- Ruanwas, P.; Chantrapromma, S.; Fun, H.K. Synthesis, Characterization, Antioxidant, and Antibacterial Activities of 2-Aminochalcones and Crystal Structure of (2E)-1-(2-aminophenyl)-3-(4-ethoxyphenyl)-2-propen-1-one. Mol. Cryst. Liq. Cryst. 2015, 609, 126–139. [Google Scholar] [CrossRef]
- Iqbal, H.; Prabhakar, V.; Sangith, A.; Chandrika, B.; Balasubramanian, R. Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med. Chem. Res. 2014, 23, 4383–4394. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Gopal, R.V. Design and in silico Analysis of Ring-A Monosubstituted Chalcones as Potential Anti-Inflammatory Agents. Bull. Pharm. Res. 2012, 2, 70–77. [Google Scholar] [CrossRef]
- Zeraik, M.; Ximenes, V.; Regasini, L.; Dutra, L.A.; Silva, D.; Fonseca, L.; Coelho, D.; Machado, S.; Bolzani, V. 4′-Aminochalcones as novel inhibitor of the chlorinating activity of myeloperoxidase. Curr. Med. Chem. 2012, 19, 5405–5413. [Google Scholar] [CrossRef]
- Trein, M.R.; Rodrigues e Oliveira, L.; Rigo, G.V.; Garcia, M.A.R.; Petro-Silveira, B.; da Silva Trentin, D.; Macedo, A.J.; Regasini, L.O.; Tasca, T. Anti-Trichomonas vaginalis activity of chalcone and amino-analogues. Parasitol. Res. 2019, 118, 607–615. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Z.; Xia, P.; Bastow, K.F.; Nakanishi, Y.; Lee, K. Antitumor Agents. Part 202: Novel 2′-Amino Chalcones: Design, Synthesis and Biological Evaluation. Bioorganic Med. Chem. Lett. 2000, 10, 699–701. [Google Scholar] [CrossRef]
- Santos, M.B.; Pinhanelli, V.C.; Garcia, M.A.R.; Silva, G.; Baek, S.J.; França, S.C.; Fachin, A.L.; Marins, M.; Regasini, L.O. Antiproliferative and pro-apoptotic activities of 2′-and 4′-aminochalcones against tumor canine cells. Eur. J. Med. Chem. 2017, 138, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Seba, V.; Silva, G.; Bastos dos Santos, M.; Baek, S.J.; França, S.D.C.; Fachin, A.L.; Regasini, L.O.; Marins, M. Chalcone Derivatives 4′-Amino-1-Naphthyl-Chalcone (D14) and 4′-Amino-4-Methyl-1-Naphthyl-Chalcone Suppress Migration and Invasion of Osteosarcoma Cells Mediated by p53 Regulating EMT-Related Genes. Int. J. Mol. Sci. 2018, 19, 2838. [Google Scholar] [CrossRef] [PubMed]
- Bastos dos Santos, M.; Anselmo, D.B.; Gisleine de Oliveira, J.; Jardim-perassi, B.V.; Monteiro, D.A.; Silva, G.; Gomes, E.; Fachin, A.L.; Marins, M.; Pires de Campos Zuccari, D.A.; et al. Antiproliferative activity and p53 upregulation effects of chalcones on human breast cancer cells. J. Enzym. Inhib. Med. Chem. 2019, 34, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorganic Med. Chem. 2002, 10, 2795–2802. [Google Scholar] [CrossRef]
- Suwito, H.; Jumina; Mustofa; Pudjiastuti, P.; Fanani, M.Z.; Kimata-Ariga, Y.; Katahira, R.; Kawakami, T.; Fujiwara, T.; Hase, T.; et al. Design and synthesis of chalcone derivatives as inhibitors of the ferredoxin—Ferredoxin-NADP+ reductase interaction of Plasmodium falciparum: Pursuing new antimalarial agents. Molecules 2014, 19, 21473–21488. [Google Scholar] [CrossRef]
- López, S.N.; Castelli, M.V.; Zacchino, S.A.; Domínguez, J.N.; Lobo, G.; Charris-Charris, J.; Cortes, J.C.G.; Ribas, J.C.; Devia, C.; Rodriguez, A.M.; et al. In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic Med. Chem. 2001, 9, 1999–2013. [Google Scholar] [CrossRef]
- Prasad, Y.R.; Rao, A.S.; Rambabu, R. Synthesis of Some 4′-Amino Chalcones and their Antiinflammatory and Antimicrobial Activity. Asian J. Chem. 2009, 21, 907–914. [Google Scholar]
- Amir, M.; Kumar, H.; Khan, S.A. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorganic Med. Chem. Lett. 2008, 18, 918–922. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Jha, A.; Zello, G.A.; Quail, J.W.; Oloo, E.O.; Nienaber, K.H.; Kowalczyk, E.S.; Allen, T.M.; Santos, C.L.; De Clercq, E.; et al. Cytotoxic N-[4-(3-aryl-3-oxo-1-propenyl)phenylcarbonyl]-3,5-bis(phenylmethylene)-4- piperidones and related compounds. Eur. J. Med. Chem. 2002, 37, 961–972. [Google Scholar] [CrossRef]
- Kozłowska, J.; Grela, E.; Baczyńska, D.; Grabowiecka, A.; Anioł, M. Novel O-alkyl Derivatives of Naringenin and Their Oximes with Antimicrobial and Anticancer Activity. Molecules 2019, 24, 679. [Google Scholar] [CrossRef]
- Suwito, H.; Nyoman, N.; Puspaningsih, T. Anticancer and antimicrobial activity of methoxy amino chalcone derivatives. Der Pharma Chem. 2015, 7, 89–94. [Google Scholar]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-X.; Wang, W.; Zhao, F.; Meng, Q.-G.; Jin, Y.-S. Synthesis of Substituted Chalcones and Assessment of their Antifungal Activity Against Trichophyton rubrum. Chem. Nat. Compd. 2018, 54, 158–160. [Google Scholar] [CrossRef]
- Castaing, M.; Wason, S.L.; Estepa, B.; Hooper, J.F.; Willis, M.C. 2-aminobenzaldehydes as versatile substrates for rhodium-catalyzed alkyne hydroacylation: Application to dihydroquinolone synthesis. Angew. Chem. Int. Ed. 2013, 52, 13280–13283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaman, I.; Gezegen, H.; Gürdere, M.B.; Dingil, A.; Ceylan, M. Screening of Biological Activities of a Series of Chalcone Derivatives against Human Pathogenic Microorganisms. Chem. Biodivers. 2010, 7, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, J.R.; Jha, A.; Zello, G.A.; Allen, T.M.; Santos, C.L.; Balzarini, J.; De Clercq, E.; Manavathu, E.K.; Stables, J.P. Cytotoxic 4′-aminochalcones and related compounds. Pharmazie 2003, 58, 227–232. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
No. | Substituent on Ring A | Substituent on Ring B | MW | logP | nON | nOHNH |
---|---|---|---|---|---|---|
1 | 2′-NH2 | 4-H | 223.28 | 3.25 | 2 | 2 |
2 | 3′-NH2 | 4-H | 223.28 | 2.86 | 2 | 2 |
3 | 4′-NH2 | 4-H | 223.28 | 2.89 | 2 | 2 |
4 | 2′-NH2 | 4-CH2CH3 | 251.33 | 4.16 | 2 | 2 |
5 | 3′-NH2 | 4-CH2CH3 | 251.33 | 3.78 | 2 | 2 |
6 | 4′-NH2 | 4-CH2CH3 | 251.33 | 3.80 | 2 | 2 |
7 | 2′-NH2 | 4-COOH | 267.28 | 3.16 | 4 | 3 |
8 | 3′-NH2 | 4-COOH | 267.28 | 2.77 | 4 | 3 |
9 | 4′-NH2 | 4-COOH | 267.28 | 2.80 | 4 | 3 |
10 | 2′-NH2 | 4-NO2 | 268.27 | 3.21 | 5 | 2 |
11 | 3′-NH2 | 4-NO2 | 268.27 | 2.82 | 5 | 2 |
12 | 4′-NH2 | 4-NO2 | 268.27 | 2.85 | 5 | 2 |
13 | 2′-NH2 | 4-OCH2C6H5 | 329.40 | 4.90 | 3 | 2 |
14 | 3′-NH2 | 4-OCH2C6H5 | 329.40 | 4.51 | 3 | 2 |
15 | 4′-NH2 | 4-OCH2C6H5 | 329.40 | 4.54 | 3 | 2 |
16 | 2′-NH2 | 3-OMe-4-OCH2C6H5 | 359.43 | 4.49 | 4 | 2 |
17 | 3′-NH2 | 3-OMe-4-OCH2C6H5 | 359.43 | 4.11 | 4 | 2 |
18 | 4′-NH2 | 3-OMe-4-OCH2C6H5 | 359.43 | 4.13 | 4 | 2 |
No. | Aminochalcone | HT-29 | LS180 | LoVo | LoVo/DX | COS7 |
---|---|---|---|---|---|---|
1 | 2′-Aminochalcone | 1.43 ± 0.16 | 2.06 ± 0.18 | 1.56 ± 0.04 | 1.43 ± 0.02 | 2.64 ± 0.47 |
2 | 3′-Aminochalcone | 1.60 ± 0.01 | 2.13 ± 0.18 | 1.88 ± 0.12 | 1.97 ± 0.30 | 3.25 ± 0.66 |
3 | 4′-Aminochalcone | 1.98 ± 0.18 | 4.68 ± 0.09 | 2.84 ± 0.09 | 2.26 ± 0.05 | 3.85 ± 0.28 |
4 | 2′-Amino-4-ethylchalcone | 3.98 ± 0.03 | 5.10 ± 0.65 | 4.77 ± 0.37 | 4.78 ± 0.19 | 9.57 ± 0.52 |
5 | 3′-Amino-4-ethylchalcone | 3.43 ± 0.05 | 4.16 ± 0.12 | 1.79 ± 0.10 | 2.35 ± 0.08 | 4.42 ± 0.27 |
6 | 4′-Amino-4-ethylchalcone | 3.61 ± 0.21 | 5.20 ± 0.30 | 4.26 ± 0.19 | 3.68 ± 0.30 | 7.16 ± 0.34 |
7 | 2′-Amino-4-carboxychalcone | 4.26 ± 0.13 | 7.86 ± 0.35 | 7.68 ± 0.34 | 11.08 ± 0.44 | 7.78 ± 0.75 |
8 | 3′-Amino-4-carboxychalcone | 12.32 ± 0.32 | 9.22 ± 0.72 | 31.50 ± 0.13 | 27.44 ± 0.11 | 15.93 ± 1.04 |
9 | 4′-Amino-4-carboxychalcone | 32.42 ± 0.99 | 18.37 ± 0.19 | 73.54 ± 0.98 | 66.18 ± 1.32 | 32.00 ± 8.11 |
10 | 2′-Amino-4-nitrochalcone | 3.24 ± 0.27 | 2.00 ± 0.35 | 1.11 ± 0.07 | 0.96 ± 0.12 | 1.79 ± 0.14 |
11 | 3′-Amino-4-nitrochalcone | 2.77 ± 0.49 | 2.89 ± 0.53 | 1.34 ± 0.10 | 1.36 ± 0.06 | 2.30 ± 0.45 |
12 | 4′-Amino-4-nitrochalcone | 3.42 ± 0.54 | 4.64 ± 0.54 | 1.80 ± 0.10 | 2.00 ± 0.12 | 3.10 ± 0.50 |
13 | 2′-Amino-4-benzyloxychalcone | ND | ND | ND | ND | ND |
14 | 3′-Amino-4-benzyloxychalcone | 7.54 ± 0.18 | 6.51 ± 0.62 | ND | 5.19 ± 0.41 | 7.61 ± 0.43 |
15 | 4′-Amino-4-benzyloxychalcone | 7.83 ± 0.14 | 8.23 ± 0.49 | 7.64 ± 0.53 | 6.66 ± 0.48 | 13.39 ± 2.78 |
16 | 2′-Amino-4-benzyloxy-3-methoxychalcone | 4.85 ± 0.08 | 6.64 ± 0.29 | 5.77 ± 0.38 | 4.59 ± 0.21 | 9.02 ± 0.17 |
17 | 3′-Amino-4-benzyloxy-3-methoxychalcone | 2.90 ± 0.27 | 3.76 ± 0.38 | 1.71 ± 0.13 | 1.77 ± 0.09 | 3.45 ± 0.22 |
18 | 4′-Amino-4-benzyloxy-3-methoxychalcone | 5.01 ± 0.49 | 4.59 ± 0.29 | 3.54 ± 0.30 | ND | ND |
19 | Cisplatin | 16.73 ± 0.58 | 1.49 ± 0.13 | 2.09 ± 0.12 | 2.03 ± 0.17 | 3.86 ± 0.62 |
20 | Doxorubicin | 0.33 ± 0.02 | 0.05 ± 0.02 | 0.73 ± 0.18 | 5.32 ± 1.44 | 3.55 ± 1.15 |
Strain | E. coli | S. aureus | C. albicans | A. alternata | F. linii | A. niger | |
---|---|---|---|---|---|---|---|
Control | Lag-phase [h] | 4.0 | 2.5 | 3.0 | 16.5 | 13.5 | 11.0 |
∆OD | 1.61 | 1.67 | 1.58 | 1.86 | 1.95 | 2.14 | |
1 | Lag-phase [h] | 10.0 | - | 24.5 | - | 18.5 | - |
∆OD | 0.12 | 0.0 | 0.14 | 0.0 | 0.73 | 0.0 | |
2 | Lag-phase [h] | - | - | - | - | 30.0 | 1.5 |
∆OD | 0.0 | 0.0 | 0.0 | 0.0 | 0.23 | 0.34 | |
3 | Lag-phase [h] | - | - | - | - | - | - |
∆OD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
4 | Lag-phase [h] | - | 32.5 | 6.0 | 26.5 | 7.5 | 30.0 |
∆OD | 0.0 | 0.84 | 0.98 | 0.40 | 1.04 | 0.60 | |
5 | Lag-phase [h] | - | 29.5 | 9.5 | 12.0 | 8.0 | 25.5 |
∆OD | 0.0 | 0.98 | 0.61 | 0.39 | 0.80 | 0.36 | |
6 | Lag-phase [h] | 3.5 | 28.0 | 9.5 | - | 9.0 | 36.5 |
∆OD | 0.16 | 0.87 | 0.44 | 0.0 | 0.40 | 0.41 | |
7 | Lag-phase [h] | - | - | - | - | 26.0 | - |
∆OD | 0.0 | 0.0 | 0.0 | 0.0 | 0.37 | 0.0 | |
8 | Lag-phase [h] | - | - | 23.0 | 26.0 | 13.0 | 39.0 |
∆OD | 0.0 | 0.0 | 0.28 | 1.14 | 0.45 | 1.11 | |
9 | Lag-phase [h] | - | 37.0 | 8.5 | 12.5 | 13.5 | 35.0 |
∆OD | 0.0 | 0.35 | 0.97 | 1.12 | 0.99 | 0.51 | |
10 | Lag-phase [h] | - | 11.5 | - | 0.5 | - | 23.0 |
∆OD | 0.0 | 0.15 | 0.0 | 0.20 | 0.0 | 0.79 | |
11 | Lag-phase [h] | - | - | - | 42.0 | - | 39.5 |
∆OD | 0.0 | 0.0 | 0.0 | 0.55 | 0.0 | 0.83 | |
12 | Lag-phase [h] | - | - | 12.0 | 13.0 | - | - |
∆OD | 0.0 | 0.0 | 0.13 | 0.87 | 0.0 | 0.0 | |
13 | Lag-phase [h] | - | - | - | 13.0 | 16.0 | 21.5 |
∆OD | 0.0 | 0.0 | 0.0 | 0.92 | 0.32 | 0.78 | |
14 | Lag-phase [h] | - | 33.5 | 4.5 | 12.0 | 6.0 | 20.5 |
∆OD | 0.0 | 0.82 | 1.42 | 0.63 | 0.87 | 0.98 | |
15 | Lag-phase [h] | - | 8.0 | 16.0 | 19.5 | 11.5 | 25.0 |
∆OD | 0.0 | 0.22 | 0.37 | 1.04 | 0.50 | 0.57 | |
16 | Lag-phase [h] | - | - | 8.5 | 8.5 | - | 40.5 |
∆OD | 0.0 | 0.0 | 0.66 | 0.64 | 0.0 | 0.41 | |
17 | Lag-phase [h] | - | 33.5 | 9.0 | - | 11.0 | - |
∆OD | 0.0 | 0.36 | 0.55 | 0.0 | 0.24 | 0.0 | |
18 | Lag-phase [h] | - | 33.5 | 4.5 | 21.5 | 6.5 | 28.5 |
∆OD | 0.0 | 0.26 | 0.68 | 0.22 | 0.41 | 0.65 | |
Oxytetracycline | Lag-phase [h] | - | - | NA | NA | NA | NA |
∆OD | 0.0 | 0.0 | |||||
Cycloheximide | Lag-phase [h] | NA | NA | - | NA | NA | NA |
∆OD | 0.0 | ||||||
Nystatin | Lag-phase [h] | NA | NA | NA | - | 10.0 | 4.5 |
∆OD | 0.0 | 0.13 | 0.74 |
Compound | Strain | |||||
---|---|---|---|---|---|---|
E. coli | S. aureus | C. albicans | A. alternata | F. linii | A. niger | |
1 | - | 0.25 | - | 1.0 | - | 0.125 |
2 | 0.25 | 0.25 | 0.5 | 0.5 | - | - |
3 | 0.5 | 0.25 | 0.5 | 0.5 | 0.25 | 0.5 |
4 | 0.5 | - | - | - | - | - |
5 | 1.0 | - | - | - | - | - |
6 | - | - | - | 1.0 | - | - |
7 | 0.125 | 0.125 | 0.125 | 0.5 | - | 0.125 |
8 | 0.125 | 0.125 | - | - | - | - |
9 | 0.125 | - | - | - | - | - |
10 | 0.25 | - | 0.5 | - | 0.5 | - |
11 | 1.0 | 0.25 | 0.25 | - | 0.5 | 1.0 |
12 | 0.25 | 0.25 | - | - | 1.0 | - |
13 | 0.25 | 0.25 | 0.5 | - | - | - |
14 | 0.0625 | - | - | - | - | - |
15 | 0.125 | - | - | - | - | - |
16 | 0.5 | 0.5 | - | - | 0.5 | - |
17 | 0.125 | - | - | 1.0 | - | 1.0 |
18 | 0.5 | - | - | - | - | - |
Oxytetracycline | 0.5 | 0.125 | NA | NA | NA | NA |
Cycloheximide | NA | NA | 0.5 | NA | NA | NA |
Nystatin | NA | NA | NA | 1.0 | 0.5 | 0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, J.; Potaniec, B.; Baczyńska, D.; Żarowska, B.; Anioł, M. Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents. Molecules 2019, 24, 4129. https://doi.org/10.3390/molecules24224129
Kozłowska J, Potaniec B, Baczyńska D, Żarowska B, Anioł M. Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents. Molecules. 2019; 24(22):4129. https://doi.org/10.3390/molecules24224129
Chicago/Turabian StyleKozłowska, Joanna, Bartłomiej Potaniec, Dagmara Baczyńska, Barbara Żarowska, and Mirosław Anioł. 2019. "Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents" Molecules 24, no. 22: 4129. https://doi.org/10.3390/molecules24224129
APA StyleKozłowska, J., Potaniec, B., Baczyńska, D., Żarowska, B., & Anioł, M. (2019). Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents. Molecules, 24(22), 4129. https://doi.org/10.3390/molecules24224129