Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes
Abstract
:1. Introduction
2. Triethylsilane
2.1. Aryl and Alkyl Ethers
2.2. Aldehyde, Acid Chloride, Ester, and Carboxylic Functions
2.3. Olefins
2.4. Carboxylic Acids
2.5. Sulfides and Dithianes
2.6. Amides and Nitriles
2.7. Sulfoxides and Sulfones to Sulfides
3. Triphenylsilane
3.1. Aromatic Aldehydes, Ketones, and Esters
3.2. Silylation of Alcohols
4. Diphenyl Silane
4.1. Phosphonic and Phosphinic Esters
4.2. Indoles, Enamines, Cinnamic Acid, Isocyanates, and Enol Ethers
4.3. Disproportionation Reaction of Indoles
4.4. Regioselective Deoxygenation of 1,2-Diols
5. Phenylsilane
5.1. Cyclic Imides
5.2. Deoxygenation of Sulfoxides and Amine N-Oxides
6. Diphenylmethylsilane
Enones and Silyl Enol Ethers
7. Dimethylphenylsilane
7.1. Reductive Amination
7.2. Conjugated Esters and Amides Leaving Carbonyl Groups Intact
7.3. Ring Opening and Closing Cascades of Furans
8. Diethylsilane
8.1. Nitriles to Generate Primary Amine Salts
8.2. Internal Ynamides Leading to β-Silyl (Z)-Enamides
9. n-Butylsilane
Polycarboxylic Acids into Their Corresponding Alkanes
10. Tetramethyldisiloxane
Secondary and Tertiary N-Phenyl Amides
11. Polymethylhydrosiloxane
Aldehydes and Ketones
12. Stereoselective Reactions
12.1. σ-π Chelation-Controlled Stereoselective Hydrosilylation of Ketones
12.2. α-Diketones to Silyl-Protected 1,2-Diols
13. Mechanistic Studies
13.1. Silane Activation Mechanism
13.2. Conclusive Evidence for an SN2-Si Mechanism
13.3. Direct Observation of a Borane-Silane Complex
14. Quantum Chemical Calculations
14.1. Stable Complex Between Trimethyl silane and B(C6F5)3
14.2. Imines via Silyliminium Intermediates
14.3. Refined Imine Hydrosilylation Mechanism Utilizing a Chiral Borane
14.4. Proposed Mechanism for the Exhaustive Reduction of Alcohols and Ethers
15. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Piers, W.E.; Chivers, T. Pentafluorophenylboranes: From obscurity to applications. Chem. Soc. Rev. 1997, 26, 345–354. [Google Scholar] [CrossRef]
- Piers, W.E. The chemistry of perfluoroaryl boranes. Adv. Organomet. Chem. 2004, 52, 1–76. [Google Scholar]
- Erker, G. Tris(pentafluorophenyl)borane: A special boron Lewis acid for special reactions. Dalton Trans. 2005, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Welch, G.C.; San Juan, R.R.; Masuda, J.D.; Stephan, D.W. Reversible, metal-free hydrogen activation. Science 2006, 314, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.W.; Erker, G. Frustrated Lewis pairs: Metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 2010, 49, 46–76. [Google Scholar] [CrossRef] [PubMed]
- Piers, W.E.; Marwitz, A.J.V.; Mercier, L.G. Mechanistic aspects of bond activation with perfluoroarylboranes. Inorg. Chem. 2011, 50, 12252–12262. [Google Scholar] [CrossRef]
- Melen, R.L. Applications of pentafluorophenyl boron reagents in the synthesis of heterocyclic and aromatic compounds. Chem. Commun. 2014, 50, 1161–1174. [Google Scholar] [CrossRef]
- Mkhalid, I.A.I.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C-H activation for the construction of C-B bonds. Chem. Rev. 2010, 110, 890–931. [Google Scholar] [CrossRef]
- Welch, G.C.; Stephan, D.W. Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J. Am. Chem. Soc. 2007, 129, 1880–1881. [Google Scholar] [CrossRef]
- Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Frohlich, R.; Grimme, S.; Stephan, D.W. Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. Chem. Commun. 2007, 47, 5072–5074. [Google Scholar] [CrossRef]
- Marks, T.J. Surface-bound metal hydrocarbonyls. Organometallic connections between heterogeneous and homogeneous catalysis. Acc. Chem. Res. 1992, 25, 57–65. [Google Scholar] [CrossRef]
- Yang, X.; Stern, C.L.; Marks, T.J. Cationic zirconocene olefin polymerization catalysts based on the organo-Lewis acid tris(pentafluorophenyl)borane. A synthetic, structural, solution dynamic, and polymerization catalytic study. J. Am. Chem. Soc. 1994, 116, 10015–10031. [Google Scholar] [CrossRef]
- Rubin, M.; Schwier, T.; Gevorgyan, V. Highly Efficient B(C6F5)3-Catalyzed Hydrosilylation of Olefins. J. Org. Chem. 2002, 67, 1936–1940. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Gao, L.; Lu, J.; Song, Z. Chemoselective deoxygenation of ether-substituted alcohols and carbonyl compounds by B(C6F5)3-catalyzed reduction with (HMe2SiCH2)2. Chem. Commun. 2018, 54, 4834–4837. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, L.C.; Santi, N.; Luk, L.Y.P.; Melen, R.L. Reactions of biologically inspired hydride sources with B(C6F5)3. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170009/1–20170009/12. [Google Scholar] [CrossRef] [PubMed]
- Chulsky, K.; Dobrovetsky, R. B(C6F5)3-Catalyzed Selective Chlorination of Hydrosilanes. Angew. Chem. Int. Ed. 2017, 56, 4744–4748. [Google Scholar] [CrossRef] [PubMed]
- Adlington, M.G.; Orfanopoulos, M.; Fry, J.L. A convenient one-step synthesis of hydrocarbons from alcohols through use of the organosilane-boron trifluoride reducing system. Tetrahedron Lett. 1976, 17, 2955–2958. [Google Scholar] [CrossRef]
- Fry, J.L.; Orfanopoulos, M.; Adlington, M.G.; Dittman, W.R.; Silverman, S.B. Reduction of aldehydes and ketones to alcohols and hydrocarbons through use of the organosilane-boron trifluoride system. J. Org. Chem. 1978, 43, 374–375. [Google Scholar] [CrossRef]
- Orfanopoulos, M.; Smonou, I. Organosilicon hydride reductions. Synth. Commun. 1988, 18, 833–836. [Google Scholar] [CrossRef]
- Larsen, J.W.; Chang, L.W. Ionic hydrogenations using boron trifluoride hydrate. Reductions of polycyclic aromatics. J. Org. Chem. 1979, 44, 1168–1170. [Google Scholar] [CrossRef]
- Yato, M.; Ishida, A. Reduction of Aromatic Ketones into Methylenes Using Triethyl silane and Titanium Tetrachloride. Synthesis of 2-Aminobutanoic acids. Heterocycles 1995, 41, 17–20. [Google Scholar]
- Smonou, I. One Step Reduction of Diaryl Ketones to Hydrocarbons by Etherated Boron Trifluoride-Triethyl silane System. Synth. Commun. 1994, 24, 1999–2002. [Google Scholar] [CrossRef]
- McCahill, J.S.J.; Welch, G.C.; Stephan, D.W. Reactivity of “frustrated Lewis pairs”: Three-component reactions of phosphines, a borane, and olefins. Angew. Chem. Int. Ed. 2007, 46, 4968–4971. [Google Scholar] [CrossRef] [PubMed]
- Massey, A.G.; Park, A.J.; Stone, F.G.A. Tris(pentafluorophenyl)borane. Proc. Chem. Soc. 1963, 212. [Google Scholar]
- Massey, A.G.; Park, A.J. Perfluorophenyl derivatives of the elements: I. Tris(pentafluorophenyl)boron. J. Organomet. Chem. 1964, 2, 245–250. [Google Scholar] [CrossRef]
- Laszlo, P.; Teston, M. Determination of the acidity of Lewis acids. J. Am. Chem. Soc. 1990, 112, 8750–8754. [Google Scholar] [CrossRef]
- Stephan, D.W.; Erker, G. Frustrated Lewis pair chemistry: Development and perspectives. Angew. Chem. Int. Ed. 2015, 54, 10178–10182. [Google Scholar] [CrossRef]
- Brown, H.C.; Schlesinger, H.I.; Cardon, S.Z. Studies in Stereochemistry. I. Steric Strains as a Factor in the Relative Stability of Some Coordination Compounds of Boron. J. Am. Chem. Soc. 1942, 64, 325–329. [Google Scholar] [CrossRef]
- Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D.W.; Paradies, J. Metal-free catalytic olefin hydrogendation: Low temperature H2 Activation by Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2012, 51, 10164–10168. [Google Scholar] [CrossRef]
- Greb, L.; Tussing, S.; Schirmer, B.; Ona-Burgos, P.; Kaupmees, K.; Lokov, M.; Leito, I.; Grimme, S.; Paradies, J. Electronic effects of triarylphospines in metal-free hydrogen activation: A kinetic and computational study. Chem. Sci. 2013, 4, 2788–2796. [Google Scholar] [CrossRef]
- Chernichekno, K.; Madarasz, A.; Papai, I.; Nieger, M.; Leskela, M.; Repo, T. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 2013, 5, 718–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momming, C.M.; Otten, E.; Kehr, G.; Frohlich, R.; Grimme, S.; Stephan, D.W.; Erker, G. Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew. Chem. Int. Ed. 2009, 48, 6643–6646. [Google Scholar] [CrossRef] [PubMed]
- Burg, A.B.; Schlesinger, H.I. Hydrides of Boron. VII. Evidence of the Transitory Existence of Borine (BH3): Borine Carbonyl and Borine Trimethylamine. J. Am. Chem. Soc. 1937, 59, 780–787. [Google Scholar] [CrossRef]
- Dobrovetsky, R.; Stephan, D.W. Stoichiometric Metal-Free Reduction of CO in Syn-Gas. J. Am. Chem. Soc. 2013, 135, 4974–4977. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Kehr, G.; Daniliuc, C.G.; Erker, G. Formylborane Formation with Frustrated Lewis Pair Templates. Angew. Chem. Int. Ed. 2014, 53, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- McGrath, N.A.; Bartlett, E.S.; Sittihan, S.; Njardarson, J.T. A concise ring expansion route to the compact core of platensimycin. Angew. Chem. Int. Ed. 2009, 48, 8543–8546. [Google Scholar] [CrossRef]
- McGrath, N.A.; Binner, J.R.; Markopoulos, G.; Brichacek, M.; Njardarson, J.T. An efficient oxidative dearomatization-radical cyclization approach to symmetrically substituted bicyclic Guttiferone natural products. Chem. Commun. 2011, 47, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Bender, T.A.; Payne, P.R.; Gagne, M.R. Late-stage chemoselective function-group manipulation of bioactive natural products with super-electrophilic silylium ions. Nat. Chem. 2017, 10, 85–90. [Google Scholar] [CrossRef]
- Mack, D.J.; Guo, B.; Njardarson, J.T. Synthesis of Allylic and Homoallylic Alcohols from Unsaturated Cyclic Ethers Using a Mild and Selective C-O Reduction Approach. Chem. Commun. 2012, 48, 7844–7846. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, Y.; Zhao, R.; Jiang, Y.; Bao, R.L.-Y.; Lin, K.; Shi, L. B(C6F5)3-Promoted hydrogenations of N-heterocycles with ammonia borane. Chem. Commun. 2017, 53, 9262–9264. [Google Scholar] [CrossRef]
- Adduci, L.L.; McLaughlin, M.P.; Bender, T.A.; Becker, J.J.; Gagne, M.R. Metal-Free Deoxygenation of Carbohydrates. Angew. Chem. Int. Ed. 2014, 53, 1646–1649. [Google Scholar] [CrossRef] [PubMed]
- Bender, T.A.; Dabrowski, J.A.; Zhong, H.; Gagne, M.R. Diastereoselective B(C6F5)3-Catalyzed Reductive Carbocyclization of Unsaturated Carbohydrates. Org. Lett. 2016, 18, 4120–4123. [Google Scholar] [CrossRef] [PubMed]
- Adduci, L.L.; Bender, T.A.; Dabrowski, J.A.; Gagne, M.R. Chemoselective conversion of biologically sourced polyols into chiral synthons. Nat. Chem. 2015, 7, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. A Novel B(C6F5)3-Catalyzed Reduction of Alcohols and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes. J. Org. Chem. 2000, 65, 6179–6186. [Google Scholar] [CrossRef] [PubMed]
- Chulsky, K.; Dobrovetsky, R. Metal-Free Catalytic Reductive Cleavage of Enol Ethers. Org. Lett. 2018, 20, 6804–6807. [Google Scholar] [CrossRef] [PubMed]
- Gevorgyan, V.; Rubin, M.; Liu, J.-X.; Yamamoto, Y. A Direct Reduction of Aliphatic Aldehyde, Acyl Chloride, Ester, and Carboxylic Functions into a Methyl Group. J. Org. Chem. 2001, 66, 1672–1675. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.; Albright, A.; Laali, K.K. Influence of Lewis Acid and Solvent in the Hydrosilylation of Aldehydes and Ketones with Et3SiH; Tris(pentafluorophenyl)borane B(C6F5)3 versus Metal Triflates [M(OTf)3; M = Sc, Bi, Ga, and Al]–Mechanistic Implications. Eur. J. Org. Chem. 2009, 2009, 1961–1966. [Google Scholar] [CrossRef]
- Bezier, D.; Park, S.; Brookhart, M. Selective Reduction of Carboxylic Acids to Aldehydes Catalyzed by B(C6F5)3. Org. Lett. 2013, 15, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Kondo, K.; Akiyama, T. B(C6F5)3-Catalyzed Hydrodesulfurization Using Hydrosilanes—Metal-Free Reduction of Sulfides. Org. Lett. 2015, 17, 3366–3369. [Google Scholar] [CrossRef]
- Lucas, K.M.; Kleman, A.F.; Sadergaski, L.R.; Jolly, C.L.; Bollinger, B.S.; Mackesey, B.L.; McGrath, N.A. Versatile, mild, and selective reduction of various carbonyl groups using an electron-deficient boron catalyst. Org. Biomol. Chem. 2016, 14, 5774–5778. [Google Scholar] [CrossRef]
- Porwal, D.; Oestreich, M. B(C6F5)3-Catalyzed Reduction of Sulfoxides and Sulfones to Sulfides with Hydrosilanes. Synthesis 2017, 49, 4698–4702. [Google Scholar]
- Parks, D.J.; Piers, W.E. Tris(pentafluorophenyl)Boron-Catalyzed Hydrosilylation of Aromatic Aldehydes, Ketones, and Esters. J. Am. Chem. Soc. 1996, 118, 9440–9441. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Foster, K.L.; Beck, V.H.; Piers, W.E. B(C6F5)3-Catalyzed Silylation of Alcohols: A Mild, General Method for Synthesis of Silyl Ethers. J. Org. Chem. 1999, 64, 4887–4892. [Google Scholar] [CrossRef] [PubMed]
- Denis, J.-M.; Forintos, H.; Szelke, H.; Keglevich, G. B(C6F5)3-catalyzed silylation versus reduction of phosphonic and phosphinic esters with hydrosilanes. Tetrahedron Lett. 2002, 43, 5569–5571. [Google Scholar] [CrossRef]
- Tan, M.; Zhang, Y. An efficient metal-free reduction using diphenyl silane with (tris-perfluorophenyl) borane as catalyst. Tetrahedron Lett. 2009, 50, 4912–4915. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, S.; He, J.; Zhang, Y. B(C6F5)3-Catalyzed (Convergent) Disproportionation Reaction of Indoles. J. Am. Chem. Soc. 2017, 139, 7399–7407. [Google Scholar] [CrossRef] [PubMed]
- Drosos, N.; Morandi, B. Boron-Catalyzed Regioselective Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled by the Strategic Formation of a Cyclic Siloxane Intermediate. Angew. Chem. Int. Ed. 2015, 54, 8814–8818. [Google Scholar] [CrossRef] [PubMed]
- Drosos, N.; Cheng, G.-J.; Ozkal, E.; Cacherat, B.; Thiel, W.; Morandi, B. Catalytic Reductive Pinacol-Type Rearrangement of Unactivated 1,2-Diols through a Concerted, Stereoinvertive Mechanism. Angew. Chem. Int. Ed. 2017, 56, 13377–13381. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Wu, X.; Lu, B.; Lu, W.; Zhang, Z.; Xie, X. Tri(pentafluorophenyl)borane-catalyzed reduction of cyclic imides with hydrosilanes: Synthesis of pyrrolidines. Tetrahedron 2018, 74, 1144–1150. [Google Scholar] [CrossRef]
- Ding, F.; Jiang, Y.; Gan, S.; Bao, R.L.-Y.; Lin, K.; Shi, L. B(C6F5)3-Catalyzed Deoxygenation of Sulfoxides and Amine N-Oxides with Hydrosilanes. Eur. J. Org. Chem. 2017, 2017, 3427–3430. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Morrison, D.J.; Piers, W.E. B(C6F5)3 catalyzed hydrosilylation of enones and silyl enol ethers. Tetrahedron 2002, 58, 8247–8254. [Google Scholar] [CrossRef]
- Ishihara, K.; Hanaki, N.; Funahashi, M.; Miyata, M.; Yamamoto, H. Tris(pentafluorophenyl)boron as an Efficient, Air Stable, and Water Tolerant Lewis Acid Catalyst. Bull. Chem. Soc. Jpn. 1995, 68, 1721–1730. [Google Scholar] [CrossRef]
- Fasano, V.; Radcliffe, J.E.; Ingleson, M.J. B(C6F5)3-Catalyzed Reductive Amination using Hydrosilanes. ACS Catal. 2016, 6, 1793–1798. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, S. Borane-Catalyzed Reductive-Silylation of Conjugated Esters and Amides Leaving Carbonyl Groups Intact. Angew. Chem. Int. Ed. 2016, 55, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Hazra, C.K.; Gandhamsetty, N.; Park, S.; Chang, S. Borane catalyzed ring opening and closing cascades of furans leading to silicon functionalized synthetic intermediates. Nat. Commun. 2016, 7, 13431–13439. [Google Scholar] [CrossRef] [PubMed]
- Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines. J. Org. Chem. 2015, 80, 7281–7287. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Dateer, R.B.; Chang, S. Borane-Catalyzed Selective Hydrosilylation of Internal Ynamides Leading to β−Silyl (Z)-Enamides. Org. Lett. 2017, 19, 190–193. [Google Scholar] [CrossRef]
- Nimmagadda, R.D.; McRae, C. A novel reduction of polycarboxylic acids into their corresponding alkanes using n-butyl silane or diethyl silane as the reducing agent. Tetrahedron Lett. 2006, 47, 3505–3508. [Google Scholar] [CrossRef]
- Chadwick, R.C.; Kardelis, V.; Lim, P.; Adronov, A. Metal-Free Reduction of Secondary and Tertiary N-Phenyl Amides by Tris(pentafluorophenyl)Boron-Catalyzed Hydrosilylation. J. Org. Chem. 2014, 79, 7728–7733. [Google Scholar] [CrossRef]
- Blondiaux, E.; Cantat, T. Efficient metal-free hydrosilylation of tertiary, secondary, and primary amides to amines. Chem. Commun. 2014, 50, 9349–9352. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Reddy, C.R.; Babu, B.N. Rapid Defunctionalization of Carbonyl Group to Methylene with Polymethylhydrosiloxane-B(C6F5)3. J. Org. Chem. 2002, 67, 9080–9082. [Google Scholar] [CrossRef] [PubMed]
- Asao, N.; Ohishi, T.; Sato, K.; Yamamoto, Y. σ−π Chelation-Controlled Stereoselective Hydrosilylation of Ketones. J. Am. Chem. Soc. 2001, 123, 6931–6932. [Google Scholar] [CrossRef]
- Asao, N.; Ohishi, T.; Sato, K.; Yamamoto, Y. Lewis Acid Catalyzed Stereoselective Hydrosilylation of Ketones Under the Control of Sigma-Pi Chelation. Tetrahedron 2002, 58, 8195–8203. [Google Scholar] [CrossRef]
- Skjel, M.K.; Houghton, A.Y.; Kirby, A.E.; Harrison, D.J.; McDonald, R.; Rosenberg, L. Silane-Controlled Diastereoselectivity in the Tris(pentafluorophenyl)Borane-Catalyzed Reduction of α−Diketones to Silyl-Protected 1,2-Diols. Org. Lett. 2010, 12, 376–379. [Google Scholar] [CrossRef]
- Parks, D.J.; Blackwell, J.M.; Piers, W.E. Studies on the Mechanism of B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Functions. J. Org. Chem. 2000, 65, 3090–3098. [Google Scholar] [CrossRef]
- Rendler, S.; Oestreich, M. Conclusive Evidence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Compounds: Implications for the Related Hydrogenation. Angew. Chem. Int. Ed. 2008, 47, 5997–6000. [Google Scholar] [CrossRef]
- Houghton, A.Y.; Hurmalainen, J.; Mansikkamaki, A.; Piers, W.E.; Tuononen, H.M. Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations. Nat. Chem. 2014, 6, 983–988. [Google Scholar] [CrossRef]
- Sakata, K.; Fujimoto, H. Quantum Chemical Study of B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Group. J. Org. Chem. 2013, 78, 12505–12512. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Sonmor, E.R.; Scoccitti, T.; Piers, W.E. B(C6F5)3-Catalyzed Hydrosilylation of Imines via Silyliminium Intermediates. Org. Lett. 2000, 2, 3921–3923. [Google Scholar] [CrossRef]
- Hermeke, J.; Mewald, M.; Oestrich, M. Experimental Analysis of the Catalytic Cycle of the Borane-Promoted Imine Reduction with Hydrosilanes: Spectroscopic Detection of Unexpected Intermediates and a Refined Mechanism. J. Am. Chem. Soc. 2013, 135, 17537–17546. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hackel, T.; McGrath, N.A. Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes. Molecules 2019, 24, 432. https://doi.org/10.3390/molecules24030432
Hackel T, McGrath NA. Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes. Molecules. 2019; 24(3):432. https://doi.org/10.3390/molecules24030432
Chicago/Turabian StyleHackel, Taylor, and Nicholas A. McGrath. 2019. "Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes" Molecules 24, no. 3: 432. https://doi.org/10.3390/molecules24030432
APA StyleHackel, T., & McGrath, N. A. (2019). Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes. Molecules, 24(3), 432. https://doi.org/10.3390/molecules24030432