Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Ethane-Oxidizing Bacteria
2.2. Optimization of the Reaction Parameters in Batch Ethanol Production
2.3. Ethane-to-Ethanol Conversion under Optimized Batch Conditions
3. Materials and Methods
3.1. Bacterial Strains and Culture Conditions
3.2. Conversion of Ethanol from Ethane
3.3. Analytical Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rass-Hansen, J.; Falsig, H.; Jørgensen, B.; Christensen, C.H. Bioethanol: Fuel or feedstock? J. Chem. Technol. Biotechnol. 2007, 82, 329–333. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing. Prog. Energy Combust. Sci. 2008, 34, 551–573. [Google Scholar] [CrossRef]
- Hidzir, N.S.; Som, A.; Abdullah, Z. Ethanol production via direct hydration of ethylene: A review. Int. Conf. Glob. Sustain. Chem. Eng. 2014. [Google Scholar]
- Lee, O.K.; Hur, D.H.; Nguyen, D.T.N.; Lee, E.Y. Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuels Bioprod. Biorefin. 2016, 10, 848–863. [Google Scholar] [CrossRef]
- Tenenbaum, D.J. Food vs. Fuel: Diversion of crops could cause more hunger. Environ. Health Perspect. 2008, 116, 254. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.; Sahu, J.; Suely, A.; Boyce, A.; Faruq, G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Mardina, P.; Li, J.; Patel, S.K.; Kim, I.-W.; Lee, J.-K.; Selvaraj, C. Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J. Microbiol. Biotechnol. 2016, 26, 1234–1241. [Google Scholar] [CrossRef]
- Ji, Y.; Mao, G.; Wang, Y.; Bartlam, M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front. Microbiol. 2013, 4, 58. [Google Scholar] [CrossRef]
- Hwang, I.Y.; Lee, S.H.; Choi, Y.S.; Park, S.J.; Na, J.G.; Chang, I.S.; Kim, C.; Kim, H.C.; Kim, Y.H.; Lee, J.W. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 2014, 24, 1597–1605. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Puri, A.W.; Lidstrom, M.E. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 2015, 29, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Takeguchi, M.; Okura, I. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Jpn. 2000, 4, 51–63. [Google Scholar] [CrossRef]
- Burrows, K.J.; Cornish, A.; Scott, D.; Higgins, I.J. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 1984, 130, 3327–3333. [Google Scholar] [CrossRef]
- Fei, Q.; Guarnieri, M.T.; Tao, L.; Laurens, L.M.; Dowe, N.; Pienkos, P.T. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnol Adv. 2014, 32, 596–614. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Patel, M.; Blok, K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 2006, 31, 425–451. [Google Scholar] [CrossRef]
- Meinhold, P.; Peters, M.W.; Chen, M.M.; Takahashi, K.; Arnold, F.H. Direct conversion of ethane to ethanol by engineered cytochrome P450 bm3. Chembiochem 2005, 6, 1765–1768. [Google Scholar] [CrossRef]
- Shoji, O.; Watanabe, Y. Monooxygenation of nonnative substrates catalyzed by bacterial cytochrome P450s facilitated by decoy molecules. Chem. Lett. 2016, 46, 278–288. [Google Scholar] [CrossRef]
- Conrado, R.J.; Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science 2014, 343, 621–623. [Google Scholar] [CrossRef]
- Miyazaki, S.S.; Izumi, Y.; Yamada, H. Purification and characterization of methanol dehydrogenase of a serine-producing methylotroph, Hyphomicrobium methylovorum. J. Ferment. Technol. 1987, 65, 371–377. [Google Scholar] [CrossRef]
- Shimoda, M.; Ono, M.; Okura, I. Ethanol formation from ethane with Methylosinus trichosporium (OB3b). J. Mol. Catal. 1989, 52, 37–39. [Google Scholar] [CrossRef]
- Bjorck, C.E.; Dobson, P.D.; Pandhal, J. Biotechnological conversion of methane to methanol: Evaluation of progress and potential. AIMS Bioeng. 2018, 5, 1–38. [Google Scholar] [CrossRef]
- Romanovskaia, V.; Sokolov, I.; Malashenko, I.; Krishtab, T. Ethanol formation by methane-utilizing bacteria at ethane co-metabolism. Mikrobiol. Z. 2002, 64, 48–56. [Google Scholar] [PubMed]
- Hwang, I.Y.; Hur, D.H.; Lee, J.H.; Park, C.-H.; Chang, I.S.; Lee, J.W.; Lee, E.Y. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J. Microbiol. Biotechnol. 2015, 25, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Khmelenina, V.N.; Kalyuzhnaya, M.G.; Starostina, N.G.; Suzina, N.E.; Trotsenko, Y.A. Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from tuva soda lakes. Curr. Microbiol. 1997, 35, 257–261. [Google Scholar] [CrossRef]
- Hur, D.H.; Na, J.G.; Lee, E.Y. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonas sp. DH-1 newly isolated from brewery waste sludge. J. Chem. Technol. Biotechnol. 2017, 92, 311–318. [Google Scholar] [CrossRef]
- Lund, M.A. Fuel Composition. U.S. Patent 2011/0061622A1, 17 March 2011. [Google Scholar]
- Patel, S.K.; Mardina, P.; Kim, S.-Y.; Lee, J.-K.; Kim, I.-W. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 2016, 26, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Mehariya, S.; Madan, B.; Lee, J.-k.; Kim, I.-W. Production of methanol from methane by encapsulated Methylosinus sporium. J. Microbiol. Biotechnol. 2016, 26, 2098–2105. [Google Scholar] [CrossRef]
- Dales, S.L.; Anthony, C. The interaction of methanol dehydrogenase and its cytochrome electron acceptor. Biochem. J. 1995, 312, 261. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Isarankura-Na-Ayudhya, C.; Tantimongcolwat, T.; Nantasenamat, C.; Galla, H.-J. EDTA-induced membrane fluidization and destabilization: Biophysical studies on artificial lipid membranes. Acta Biochim. Biophys. Sin. 2007, 39, 901–913. [Google Scholar] [CrossRef]
- Mehta, P.K.; Mishra, S.; Ghose, T.K. Methanol accumulation by resting cells of Methylosinus trichosporium (I). J. Gen. Appl. Microbiol. 1987, 33, 221–229. [Google Scholar] [CrossRef]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Ojala, D.S.; Beck, D.A.; Kalyuzhnaya, M.G. Genetic systems for moderately halo (alkali) philic bacteria of the genus methylomicrobium. Meth. Enzymol. 2011, 495, 99–118. [Google Scholar] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.H.; Hwang, I.Y.; Lee, O.K.; Won, W.; Lee, E.Y. Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase. Molecules 2019, 24, 591. https://doi.org/10.3390/molecules24030591
Oh SH, Hwang IY, Lee OK, Won W, Lee EY. Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase. Molecules. 2019; 24(3):591. https://doi.org/10.3390/molecules24030591
Chicago/Turabian StyleOh, So Hyeon, In Yeub Hwang, Ok Kyung Lee, Wangyun Won, and Eun Yeol Lee. 2019. "Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase" Molecules 24, no. 3: 591. https://doi.org/10.3390/molecules24030591
APA StyleOh, S. H., Hwang, I. Y., Lee, O. K., Won, W., & Lee, E. Y. (2019). Development and Optimization of the Biological Conversion of Ethane to Ethanol Using Whole-Cell Methanotrophs Possessing Methane Monooxygenase. Molecules, 24(3), 591. https://doi.org/10.3390/molecules24030591