Dissipation Dynamics and Dietary Risk Assessment of Kresoxim-Methyl Residue in Rice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Optimization
2.2. Method Validationlimit of Quantification
2.3. Accuracy and Precision
2.4. Digestion Dynamics in Rice Plants
2.5. Final Residue Test
2.6. Risk Assessment of Chronic Dietary Intake
3. Materials and Methods
3.1. Reagents and Standards
3.2. Instrument Conditions
3.3. Field Experiments
3.4. Sample Processing
3.5. Risk Assessment of Chronic Dietary Exposure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice [Oryza sativa] production in China. Plant Prod. Sci. 2008, 12, 3–8. [Google Scholar] [CrossRef]
- Pereira, M.B.; Facco, J.F.; Zemolin, G.M.; Martins, M.L.; Prestes, O.D.; Zanella, R.; Adaime, M.B. Pesticide multiresidue determination in rice paddy water by gas chromatography coupled with triple quadrupole mass spectrometry. J. Aoac Int. 2014, 97, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, X.; Yuan, S.-K.; Li, Y.-F.; Gao, T.-C. Effect of azoxystrobin and kresoxim-methyl on rice blast and rice grain yield in China. Ann. Appl. Biol. 2015, 166, 434–443. [Google Scholar] [CrossRef]
- Vawdrey, L.L.; Grice, K.R.E.; Westerhuis, D. Field and laboratory evaluations of fungicides for the control of brown spot (Corynespora cassiicola) and black spot (Asperisporium caricae) of papaya in far north Queensland, Australia. Australas. Plant Path. 2008, 37, 552–558. [Google Scholar] [CrossRef]
- Grossmann, K.; Retzlaff, G. Bioregulatory Effects of the Fungicidal Strobilurin Kresoxim-methyl in Wheat (Triticum aestivum). Pest Manag. Sci. 2015, 50, 11–20. [Google Scholar] [CrossRef]
- Aguilera, A.; Valverde, A.; Camacho, F.; Boulaid, M.; García-Fuentes, L. Household processing factors of acrinathrin, fipronil, kresoxim-methyl and pyridaben residues in green beans. Food Control 2014, 35, 146–152. [Google Scholar] [CrossRef]
- Available online: http://www.chinapesticide.org.cn/hysj/index.jhtml (accessed on 13 December 2018).
- Md Musfiqur, R.; Jong-Hyouk, P.; Abd El-Aty, A.M.; Jeong-Heui, C.; Soon-Kil, C.; Angel, Y.; Ki Hun, P.; Jae-Han, S. Analysis of kresoxim-methyl and its thermolabile metabolites in Korean plum: An application of pepper leaf matrix as a protectant for GC amenable metabolites. J. Sep. Sci. 2013, 36, 203–211. [Google Scholar]
- Xue, J.; Li, H.; Liu, F.; Jiang, W.; Chen, X. Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid-liquid microextraction coupled with gas chromatography. J. Sep. Sci. 2014, 37, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Chen, X.; Liu, F.; You, X.; Xue, J. Effervescence-assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice. J. Sep. Sci. 2015, 37, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Merdassa, Y.; Liu, J.F.; Megersa, N. Development of a one-step microwave-assisted extraction procedure for highly efficient extraction of multiclass fungicides in soils. Anal. Methods 2014, 6, 3025–3033. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.; Morales, A.; Maestro, A.; Cermeño, S.; Oliva, J.; Barba, A. Determination of Nine Fungicides in Grape and Wine Using QuEChERS Extraction and LC/MS/MS Analysis. J. Aoac Int. 2015, 98, 6917–6929. [Google Scholar] [CrossRef] [PubMed]
- Malhat, F.; Kamel, E.; Saber, A.; Hassan, E.; Youssef, A.; Almaz, M.; Hassan, A.; Fayz, E.S. Residues and dissipation of kresoxim methyl in apple under field condition. Food Chem. 2013, 140, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fan, X.; Ma, Y.; Hu, J. Dissipation behaviour, residue distribution and dietary risk assessment of tetraconazole and kresoxim-methyl in greenhouse strawberry via RRLC-QqQ-MS/MS technique. Ecotox. Environ. Safe. 2018, 148, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Sabale, R.; Shabeer, T.P.A.; Utture, S.C.; Banerjee, K.; Jadhav, M.R.; Oulkar, D.P.; Adsule, P.G.; Deshmukh, M.B. Dissipation kinetics, safety evaluation, and assessment of pre-harvest interval (PHI) and processing factor for kresoxim methyl residues in grape. Environ. Monit. Assess. 2014, 186, 2369–2374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Jia, C.; Duan, L.; Zhang, W.; Yu, P.; He, M.; Chen, L.; Zhao, E. Residue behavior and dietary intake risk assessment of three fungicides in tomatoes (Lycopersicon esculentum Mill.) under greenhouse conditions. Regul. Toxicol. Pharm. 2016, 81, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Duan, J.; Wu, Y.; Liu, Q.; He, Q.; Shi, Y.; Yu, L.; Cao, H. Evaluation of Highly Detectable Pesticides Sprayed in Brassica napus L.: Degradation Behavior and Risk Assessment for Honeybees. Molecules 2018, 23, 2482. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Duan, J.; Wu, Y.; Liu, Q.; He, Q.; Shi, Y.; Yu, L.; Cao, H. A survey of multiple pesticide residues in pollen and beebread collected in China. Sci. Total Environ. 2018, 640–641, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- European Commission, Directorate General for Health and Food Safety. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_11945.pdf (accessed on 13 December 2018).
- JMPR. Available online: http://101.96.10.42/www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/REPORT2001.pdf (accessed on 18 December 2018).
- The National Food Safety Standards: Maximum Residue Limits for Pesticides in Food, GB2763-2018. Available online: http://202.127.42.84/tbt-sps/mrlsdb/mrlsdb.do (accessed on 18 December 2018).
- European Commission, Directorate General for Health and Food Safety. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.CurrentMRL&language=EN (accessed on 18 December 2018).
Sample Availability: Samples of Kresoxim-Methyl are available from the authors. |
Matrix | Linear Range (mg/kg) | Regression Equation | Correlation Coefficient (r2) | Spiked Level (mg/kg) | Average Recovery-Inter (%) | RSD (%) | Average Recovery-Intra (%) | RSD (%) |
---|---|---|---|---|---|---|---|---|
Plant | 0.005–0.5 | 2323804.0x + 5135.8 | 0.9996 | 0.005 | 84.1 | 4.1 | 86.2 | 3.2 |
0.05 | 89.5 | 2.7 | 88.2 | 5.6 | ||||
0.5 | 99.3 | 3.2 | 95.2 | 7.5 | ||||
Brown rice | 0.005–0.5 | 2559862.7x + 5135.8 | 0.9997 | 0.005 | 84.4 | 7.1 | 85.2 | 5.6 |
0.05 | 80.5 | 6.5 | 92.3 | 4.2 | ||||
0.5 | 89.0 | 5.4 | 89.3 | 3.2 | ||||
Rice husk | 0.005–0.5 | 2291345.6x − 4363.7 | 0.9998 | 0.005 | 86.9 | 2.1 | 95.6 | 6.3 |
0.05 | 91.7 | 3.1 | 89.5 | 5.5 | ||||
0.5 | 85.8 | 4.2 | 82.3 | 6.1 |
Age (y) | Sex | Body Weight (kg) | F (g/days) | NEDI [μg/(kg bw·days)] | RQ |
---|---|---|---|---|---|
2–3 | Male | 13.2 | 135.5 | 0.051 | 0.00013 |
Female | 12.3 | 133.7 | 0.054 | 0.00014 | |
4–6 | Male | 16.8 | 179.7 | 0.053 | 0.00013 |
Female | 16.2 | 159.5 | 0.049 | 0.00012 | |
7–10 | Male | 22.9 | 230.8 | 0.050 | 0.00013 |
Female | 21.7 | 212.0 | 0.049 | 0.00012 | |
11–13 | Male | 34.1 | 266.2 | 0.039 | 0.000098 |
Female | 34.0 | 238.4 | 0.035 | 0.000088 | |
14–17 | Male | 46.7 | 308.7 | 0.033 | 0.000083 |
Female | 45.2 | 240.7 | 0.027 | 0.000067 | |
18–29 | Male | 58.4 | 309.6 | 0.027 | 0.000066 |
Female | 52.1 | 260.9 | 0.025 | 0.000063 | |
30–44 | Male | 64.9 | 316.2 | 0.024 | 0.000061 |
Female | 55.7 | 278.6 | 0.025 | 0.000063 | |
45–59 | Male | 63.1 | 314.9 | 0.025 | 0.000062 |
Female | 57.0 | 272.8 | 0.024 | 0.000060 | |
60–69 | Male | 61.5 | 274.0 | 0.022 | 0.000056 |
Female | 54.3 | 242.9 | 0.022 | 0.000056 | |
>70 | Male | 58.5 | 258.3 | 0.022 | 0.000055 |
Female | 51.0 | 223.5 | 0.022 | 0.000055 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Yu, L.; Tong, Z.; Dong, X.; Chu, Y.; Wang, M.; Gao, T.; Duan, J. Dissipation Dynamics and Dietary Risk Assessment of Kresoxim-Methyl Residue in Rice. Molecules 2019, 24, 692. https://doi.org/10.3390/molecules24040692
Sun M, Yu L, Tong Z, Dong X, Chu Y, Wang M, Gao T, Duan J. Dissipation Dynamics and Dietary Risk Assessment of Kresoxim-Methyl Residue in Rice. Molecules. 2019; 24(4):692. https://doi.org/10.3390/molecules24040692
Chicago/Turabian StyleSun, MingNa, Lu Yu, Zhou Tong, Xu Dong, Yue Chu, Mei Wang, TongChun Gao, and JinSheng Duan. 2019. "Dissipation Dynamics and Dietary Risk Assessment of Kresoxim-Methyl Residue in Rice" Molecules 24, no. 4: 692. https://doi.org/10.3390/molecules24040692
APA StyleSun, M., Yu, L., Tong, Z., Dong, X., Chu, Y., Wang, M., Gao, T., & Duan, J. (2019). Dissipation Dynamics and Dietary Risk Assessment of Kresoxim-Methyl Residue in Rice. Molecules, 24(4), 692. https://doi.org/10.3390/molecules24040692