Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chlorination Data
2.2. Ecotoxicity Data
3. Materials and Methods
3.1. Chemicals
3.2. Chlorination Reaction
3.2.1. Apparatus
3.2.2. Chlorination Procedure and Product Isolation
3.3. Spectral Data
3.4. Ecotoxicity Assays
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Narcotics Control Board. Report of the International Narcotics Control Board for 2012; United Nations: New York, NY, USA, 2013; Available online: http://incb.org/documents/Publications/AnnualReports/AR2012/AR_2012_E.pdf (accessed on 5 March 2013).
- Progler, Y. Drug addiction in Gaza and the illicit trafficking of Tramadol. J. Res. Med. Sci. 2010, 15, 185–188. [Google Scholar] [PubMed]
- Tramadol Update Review Report. Agenda item 6.1. Expert Committee on Drug Dependence, Thirty-sixth Meeting Geneva, 16–20 June 2014. Available online: https://www.who.int/medicines/areas/quality_safety/6_1_Update.pdf (accessed on 16 June 2014).
- Radbruch, L.; Glaeske, G.; Grond, S.; Munchberg, F.; Scherbaum, N.; Storz, E.; Tholen, K.; Zagermann-Muncke, P.; Zieglgansberger, W.; Hoffmann-Menzel, H.; et al. Topical review on the abuse and misuse potential of Tramadol and Tilidine in Germany. Subst. Abus. 2013, 34, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Tramadol History and Statistics. Available online: https://drugabuse.com/library/Tramadol-history-and-statistics (accessed on 16 May 2016).
- Boumendjel, A.; Tawe, G.S.; Bum, E.N.; Chabrol, T.; Beney, C.; Sinniger, V.; Haudecoeur, R.; Marcourt, L.; Challal, S.; Ferreira–Queiroz, E.; et al. Occurrence of the Synthetic Analgesic Tramadol in an African Medicinal Plant. Angew. Chem. Int. Ed. Engl. 2013, 52, 11780–11784. [Google Scholar] [CrossRef] [PubMed]
- Kusari, S.; Tatsimo, S.J.N.; Zühlke, S.; Spiteller, M. Synthetic Origin of Tramadol in the Environment. Angew. Chem. Int. Ed. 2016, 55, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Kusari, S.; Tatsimo, S.J.N.; Zîhlke, S.; Talonts, F.; Kouam, S.F.; Spiteller, M. Tramadol -a true natural product? Angew. Chem. Int. Ed. 2014, 53, 12073–12076. [Google Scholar] [CrossRef] [PubMed]
- Li, P. Tramadol. In Handbook of Metabolic Pathways of Xenobiotics; Lee, P.W., Ed.; John Wiley & Sons Incorporated: Hoboken, NJ, USA, 2014; Volume 5, pp. 2281–2283. [Google Scholar]
- Rúa-Gómez, P.; Püttmann, W. Occurrence and removal of lidocaine, Tramadol, venlafaxine and their metabolites in German wastewater treatment plants. Environ. Sci. Pollut. Res. 2012, 19, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef]
- Baker, D.R.; Kasprzyk-Hordern, B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 1620–1631. [Google Scholar] [CrossRef] [Green Version]
- Chytil, L.; Štícha, M.; Matoušková, O.; Perlík, F.; Slanař, O. Enatiomeric determination of Tramadol and O-desmethyl Tramadol in human urine by gas chromatography–mass spectrometry. J. Chromatogr. B 2009, 877, 1937–1942. [Google Scholar] [CrossRef]
- Wu, W.N.; McKown, L.A.; Codd, E.E.; Raffa, R.B. Metabolism of two analgesic agents, Tramadol -n-oxide and Tramadol, in specific pathogen-free and axenic mice. Xenobiotica 2006, 36, 551–565. [Google Scholar] [CrossRef]
- Wu, W.N.; McKown, L.A.; Liao, S. Metabolism of the analgesic drug ULTRAM® (Tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 2002, 32, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ. 2013, 454, 442–456. [Google Scholar] [CrossRef]
- Antonopoulou, Μ.; Hela, D.; Konstantinou, I. Photocatalytic degradation kinetics, mechanism and ecotoxicity assessment of Tramadol metabolites in aqueous TiO2 suspensions. Sci. Total Environ. 2016, 545, 4764–4785. [Google Scholar] [CrossRef]
- Rúa-Gómez, P.C.; Guedez, A.A.; Conchi, O.A.; Püttmann, W. Upgrading of Wastewater Treatment Plants Through the Use of Unconventional Treatment Technologies: Removal of Lidocaine, Tramadol, Venlafaxine and Their Metabolites. Water 2012, 4, 6506–6669. [Google Scholar] [CrossRef]
- Cheng, H.; Song, D.; Chang, Y.; Liu, H.; Qu, J. Chlorination of Tramadol: Reaction kinetics, mechanism and genotoxicity evaluation. Chemosphere 2015, 141, 282–289. [Google Scholar] [CrossRef]
- Zarrelli, A.; DellaGreca, M.; Parolisi, A.; Iesce, M.R.; Cermola, F.; Temussi, F.; Isidori, M.; Lavorgna, M.; Passananti, M.; Previtera, L. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine. Sci. Total Environ. 2012, 426, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Temussi, F.; DellaGreca, M.; Pistillo, P.; Previtera, L.; Zarrelli, A.; Criscuolo, E.; Lavorgna, M.; Russo, C.; Isidori, M. Sildenafil and tadalafil in simulated chlorination conditions: Ecotoxicity of drugs and their derivatives. Sci. Total Environ. 2013, 463, 366–373. [Google Scholar] [CrossRef]
- Zarrelli, A.; DellaGreca, M.; Iesce, M.R.; Lavorgna, M.; Temussi, F.; Schiavone, L.; Criscuolo, E.; Parrella, A.; Previtera, L.; Isidori, M. Ecotoxicological evaluation of caffeine and its derivatives from a simulated chlorination step. Sci. Total Environ. 2014, 470, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Hozalski, R.M.; Arnold, W.A.; Chun, C.; LaPara, T.M.; Jeong-Yub, L.; Carrie, R.; Pearson, C.R.; Zhang, P. Degradation of Halogenated Disinfection Byproducts in Water Distribution Systems. In Disinfection By-Products in Drinking Water; Chapter 23; ACS Symposium Series; American Chemical Society: Minneapolis, MN, USA, 2008; Volume 995, pp. 334–348. [Google Scholar] [CrossRef]
- Boleda, M.R.; Galceran, M.T.; Ventura, F. Behaviour of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration osmosis (UF/RO) treatments. Environ. Pollut. 2011, 159, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Buth, J.M.; Grandbois, M.; Vikesland, P.J.; McNeill, K.; Arnold, W.A. Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo-p-dioxins. Environ. Toxicol. Chem. 2009, 28, 2555–2563. [Google Scholar] [CrossRef]
- Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Sci. Total Environ. 2007, 373, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Lim, E.S.; Lee, S.K.; Park, J.S.; Kim, Y.H.; Min, J. Toxicity evaluation of verapamil and Tramadol based on toxicity assay and expression patterns of Dhb, Vtg, Arnt, CYP4, and CYP314 in Daphnia magna. Environ. Toxicol. 2011, 26, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Bergheim, M.; Gieré, R.; Kümmerer, K. Biodegradability and ecotoxicitiy of Tramadol, ranitidine, and their photoderivatives in the aquatic environment. Environ. Sci. Poll. Res. 2012, 19, 72–85. [Google Scholar] [CrossRef] [PubMed]
- EC. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for Existing Substances. Part II; Environmental Risk Assessment; Office for Official Publications of the European Communities, Luxembourg. 1996. Available online: https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf (accessed on 1 April 2003).
- EC. Amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) n. 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. Official Journal of the European Union L 83, 30/3/2011; 286/2011 of 10 March, 2011. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:083:0001:0053:en:PDF (accessed on 30 March 2011).
- US Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th ed.; EPA-821-R-02-012; Office of Research and Development: Washington, DC, USA, 2002. Available online: https://www.epa.gov/sites/production/files/2015-08/documents/acute-freshwater-and-marine-wet-manual_2002.pdf (accessed on 1 October 2002).
- ISO (1998). Water quality—Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute toxicity test. EN ISO 1996, 6341, 1–22. [Google Scholar]
- Hok, L.; Ulm, L.; Tandarić, T.; Krivohlavek, A.; Šasskić, D.; Vrček, V. Chlorination of 5-fluorouracil: Reaction mechanism and ecotoxicity assessment of chlorinated products. Chemosphere 2018, 207, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Bedner, M.; MacCrehan, W.A. Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ. Sci. Technol. 2006, 40, 516–522. [Google Scholar] [CrossRef] [PubMed]
- ISO (2007). Water Quality Determination of the Inhibitory Effect of Water Samples of the Light Emission of Vibrio fischeri (Luminiscent Bacteria Test). EN ISO 2007, 11348-3, 1–21. [Google Scholar]
- ISO (2012). Water quality—Fresh water algal growth inhibition test with unicellular green algae. EN ISO 2012, 8692, 1–21. [Google Scholar]
- Libralato, G.; Avezzù, F.; Volpi Ghirardini, A. Lignin and tannin toxicity to Phaeodactylum tricornutum (Bohlin). J. Hazard. Mater. 2011, 194, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Maselli, V.; Siciliano, A.; Giorgio, A.; Falanga, A.; Galdiero, S.; Guida, M.; Fulgione, D.; Galdiero, E. Multigenerational effects and DNA alterations of QDs-Indolicidin on Daphnia magna. Environ. Poll. 2017, 224, 597–605. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | A. fischeri (30 min) | R. subcapitata (72 h) | D. magna (24 h) |
---|---|---|---|
TRA | N.E. up to 100 | 87.1 (81.8 to 92.7) | 88.5 (81.9 to 95.4) |
Mix | N.E up to 100 | 58.7 (51.2 to 67.4) | 54.4 (48.6 to 60.8) |
BP1 | 40.3 (36.5 to 44.5) | 66.2 (63.5 to 69.0) | 26.1 (23.3 to 27.4) |
BP2 | 282.6 (266.5 to 299.6) | 322.2 (292.8 to 354.7) | 357.9 (301.5 to 370.4) |
BP3 | 52.8 (50.9 to 58.1) | 71.7 (65.3 to 78.9) | 63.4 (60.4 to 65.8) |
BP4 | 34.4 (31.6 to 37.4) | 32.2 (32.3 to 38.4) | 28.5 (20.4 to 25.7) |
BP5 | 45.6 (41.2 to 49.3) | 44.7 (39.6 to 58.6) | 38.6 (35.3 to 42.1) |
BP6 | 252.8 (212.7 to 300.6) | 447.4 (413.1 to 484.6) | 402.3 (398.9 to 407.8) |
BP7 | 81.3 (76.4 to 86.5) | 117.8 (105.7 to 131.2) | 106.5 (90.7 to 108.1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanucci, V.; Siciliano, A.; Galdiero, E.; Guida, M.; Luongo, G.; Liguori, R.; Di Fabio, G.; Previtera, L.; Zarrelli, A. Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol. Molecules 2019, 24, 693. https://doi.org/10.3390/molecules24040693
Romanucci V, Siciliano A, Galdiero E, Guida M, Luongo G, Liguori R, Di Fabio G, Previtera L, Zarrelli A. Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol. Molecules. 2019; 24(4):693. https://doi.org/10.3390/molecules24040693
Chicago/Turabian StyleRomanucci, Valeria, Antonietta Siciliano, Emilia Galdiero, Marco Guida, Giovanni Luongo, Renato Liguori, Giovanni Di Fabio, Lucio Previtera, and Armando Zarrelli. 2019. "Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol" Molecules 24, no. 4: 693. https://doi.org/10.3390/molecules24040693
APA StyleRomanucci, V., Siciliano, A., Galdiero, E., Guida, M., Luongo, G., Liguori, R., Di Fabio, G., Previtera, L., & Zarrelli, A. (2019). Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol. Molecules, 24(4), 693. https://doi.org/10.3390/molecules24040693