A “Green” Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius
Abstract
:1. Introduction
2. Results
2.1. Clerodane Diterpenoids and Anti-Angiogenic Activity
2.2. HGE–UHPLC–MS Method to Rapid Determination of Nine Diterpenoids
2.2.1. Extraction Procedure
2.2.2. Optimization of UHPLC-MS Conditions
2.2.3. Method Validation
Calibration Curve, Limit of Detection (LOD), and Limit of Quantification (LOQ)
Precision
Recovery
Stability and Reproducibility
2.2.4. Sample Analysis
2.2.5. Principle Component Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Anti-Angiogenic Activity Assay
3.3. Materials
3.4. Extraction Procedures
3.5. UHPLC and MS Conditions
3.6. Standard Preparation and Calibration Curves
3.7. Method Validation
3.7.1. LOQ, LOD, Linearity and Calibration Curve
3.7.2. Precision
3.7.3. Accuracy
3.7.4. Reproducibility and Stability
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, R.T.; Natschke, S.L.M.; Lee, K.H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 2016, 33, 1166–1226. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.L.; Yao, G.D.; Zhang, Y.Y.; Lin, B.; Zhang, Y.; Li, L.Z.; Huang, X.X.; Song, S.J. Pyran-2-one derivatives from Croton crassifolius as potent apoptosis inducers in HepG2 cells via p53-mediated Ras/Raf/ERK pathway. Bioorg. Chem. 2018, 79, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.H.; Wang, J.J.; Liang, Y.Y.; Ge, W.; Wang, G.C.; Li, Y.L.; Chung, H.Y. Potent anti-angiogenic component in Croton crassifolius and its mechanism of action. J. Ethnopharmacol. 2015, 175, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.S.; Cao, D.; Gao, Y.H.; Li, S.H.; Zhu, J.P.; Yang, B.; Zhou, L.; Zhou, Y.; Jin, J.; Zhao, Z.X. New clerodane diterpenoids from Croton crassifolius. Fitoterapia 2016, 108, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.C.; Li, J.G.; Li, G.Q.; Xu, J.J.; Wu, X.; Ye, W.C.; Li, Y.L. Clerodane Diterpenoids from Croton crassifolius. J. Nat. Prod. 2012, 75, 2188–2192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Li, H.H.; Qi, F.M.; Dong, L.L.; Hai, Y.; Fan, G.X.; Fei, D.Q. Crocrassins A and B: Two novel sesquiterpenoids with an unprecedented carbon skeleton from Croton crassifolius. RSC Adv. 2014, 4, 30059–30061. [Google Scholar] [CrossRef]
- Qiu, M.S.; Yang, T.; Tan, Q.L.; Zhu, J.P.; Yang, B.; Cao, D.; Zhou, Y.; Zhao, Z.X. Simultaneous determination of six terpenoids in Croton crassifolius Radix by HPLC. Chin. Tradit. Herb. Drugs. 2016, 47, 3901–3904. [Google Scholar]
- Wei, J.X.; Zhen, J.; Zhi, C.; Guo, X.J. Rapid determination of eight oxoisoaporphine alkaloids in Rhizoma Menispermi by the optimal homogenate extraction followed by UPLC-MS/MS. Anal. Bioanal. Chem. 2016, 407, 5535–5540. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Ma, C.H.; Yang, L.; Wang, W.J.; Sui, X.Y.; Zhao, C.J.; Zu, Y.G. Optimization of Shikonin Homogenate Extraction from Arnebia euchroma Using Response Surface Methodology. Molecules 2013, 18, 466. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.G.; Zu, Y.G.; Zhao, C.J.; Yang, L. Homogenate extraction technology of camptothecine and hydroxycamptothecin from Camptotheca acuminata leaves. J. Forestry Res. 2009, 20, 168–170. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Mang, Y.L.; Shen, F.Q.; Xie, J.; Su, W.K. Homogenate extraction of gardenia yellow pigment from Gardenia Jasminoides Ellis fruit using response surface methodology. J. Food Sci. Tech. 2014, 51, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Shin, Y.J.; Park, S.J.; Yoo, G.J.; Kim, Y.J. Simultaneous Determination of Six Compounds in Hedera helix L. Using UPLC-ESI–MS/MS. Chromatographia 2017, 80, 1025–1033. [Google Scholar] [CrossRef]
- Chen, L.J.; Liu, Y.; Jia, D.C.; Yang, J.; Zhao, J.H.; Chen, C.L.; Liu, H.S.; Liang, X. Pharmacokinetics and Biodistribution of Aurantiamide and Aurantiamide Acetate in Rats after Oral Administration of Portulaca oleracea L. Extracts. J. Agric. Food Chem. 2016, 64, 3445–3455. [Google Scholar] [CrossRef] [PubMed]
- Maldini, M.; Montor, P.; Addis, R.; Toniolo, C.; Petretto, G.L.; Foddai, M.; Nicoletti, M.; Pintore, G. A new approach to discriminate Rosmarinus officinalis L. plants with antioxidant activity, based on HPTLC fingerprint and targeted phenolic analysis combined with PCA. Ind. Crop. Prod. 2016, 94, 665–672. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Zhang, Q.; Wang, K.; Yao, W.F.; Bao, B.H.; Zhang, L.; Tang, Y.P. Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018, 23, 3246. [Google Scholar] [CrossRef] [PubMed]
- Drouet, S.; Abbasi, B.H.; Falguières, A.; Ahmad, W.; Sumaira; Ferroud, C.; Doussot, J.; Vanier, J.R.; Lainé, E.; Hano, C. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.). Molecules 2018, 23, 904. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, J.L.; Wu, J.S.; Sun, T.M.; Zhou, L.N.; Song, S.J.; You, S. Biotransfomation of cyperenoic acid by Cunninghamella elegans AS 3.2028 and the potent anti-angiogenic activities of its metabolites. Fitoterapia 2017, 118, 32–37. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1–9 are not available from the authors. |
Diterpenoids | Retention Times (min) | Precursor Ion (m/z) Q1 | Produced Ion (m/z) Q2 | Dwell Time (ms) | Frag (V) | CE (V) |
---|---|---|---|---|---|---|
1 | 4.861 | 397.1 | 367.1 | 50 | 154 | 20 |
2 | 5.113 | 390.0 | 373.1 | 50 | 102 | 4 |
3 | 5.498 | 343.0 | 343.0 | 50 | 148 | 0 |
4 | 5.622 | 346.0 | 175.1 | 50 | 102 | 24 |
5 | 5.623 | 439.2 | 159.1 | 50 | 148 | 32 |
6 | 5.979 | 357.0 | 187.1 | 50 | 97 | 16 |
7 | 6.108 | 351.1 | 241.1 | 50 | 220 | 24 |
8 | 6.137 | 379.1 | 361.1 | 50 | 143 | 16 |
9 | 6.454 | 397.2 | 288.1 | 50 | 169 | 28 |
Diterpenoids | Linear regression Data | LOD (ng/mL) | LOQ (ng/mL) | Intra-Day Precision (RSD%) | Inter-Day Precision (RSD%) | Reproducibility (RSD%) | Stability (RSD%) | Recovery | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Linear Range (ng/mL) | Regression Equation | R | Mean (%) | RSD (%) | |||||||
1 | 10–1000 | Y = 1.3629X + 47.268 | 0.9943 | 0.363 | 3.65 | 3.31 | 3.65 | 3.67 | 3.13 | 104.5 | 3.56 |
2 | 5–1400 | Y = 2.3121X + 151.11 | 0.9961 | 0.223 | 3.96 | 4.54 | 5.96 | 4.45 | 2.78 | 98.1 | 3.45 |
3 | 5–1500 | Y = 2.5559X + 43.832 | 0.9964 | 0.650 | 4.21 | 3.77 | 4.21 | 4.18 | 4.19 | 103.4 | 3.98 |
4 | 20–1200 | Y = 2.2157 + 33.717 | 0.9970 | 0.924 | 2.67 | 2.43 | 2.67 | 3.52 | 2.14 | 98.2 | 3.76 |
5 | 5–500 | Y = 2.277X + 15.783 | 0.9950 | 0.421 | 4.78 | 3.87 | 4.78 | 5.71 | 1.87 | 98.1 | 2.97 |
6 | 2–1200 | Y = 2.0473X + 16.295 | 0.9987 | 0.0566 | 0.87 | 4.34 | 4.87 | 4.34 | 3.96 | 103.4 | 2.13 |
7 | 5–2000 | Y = 2.3003X + 18.431 | 0.9977 | 0.150 | 4.45 | 3.93 | 4.45 | 3.14 | 4.55 | 102.3 | 3.67 |
8 | 20–100 | Y = 4.7534X + 101.82 | 0.9984 | 0.412 | 3.31 | 3.14 | 3.31 | 3.65 | 3.29 | 101.8 | 3.33 |
9 | 2–800 | Y = 3.803X + 79.724 | 0.9989 | 0.100 | 1.04 | 2.44 | 3.04 | 3.85 | 4.21 | 96.3 | 4.21 |
Sources | Diterpenoids | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total | |
Guangdong-1 | 77.40 | 330.04 | 98.54 | 289,330.11 | 0.85 | 38.25 | 20.20 | 0.16 | 145.54 | 290,041.09 |
Guangdong-2 | 77.51 | 11,075.26 | 12.07 | 192,821.96 | 1.43 | 361.43 | 11.35 | 0.30 | 120.43 | 204,481.74 |
Guangdong-3 | 102.42 | 880.56 | 12.32 | 276,865.46 | 1.43 | 419.17 | 18.22 | 0.40 | 139.01 | 278,438.99 |
Guangxi-1 | 7.63 | 2,125.32 | 20.90 | 112,220.39 | 1.23 | 43.70 | 6.75 | 0 | 122.15 | 114,548.07 |
Guangxi-2 | 48.65 | 112.90 | 82.50 | 182,955.12 | 0 | 207.63 | 10.87 | 0 | 101.73 | 183,519.40 |
Guangxi-3 | 84.21 | 9.64 | 7.85 | 30,834.32 | 22.70 | 0 | 18.41 | 0 | 123.27 | 31,100.40 |
Yunnan-1 | 194.56 | 236.12 | 52.87 | 317,445.29 | 4.44 | 442.12 | 10.30 | 2.58 | 199.63 | 318,587.91 |
Yunnan -2 | 46.80 | 2,959.89 | 7.76 | 126,905.53 | 1.26 | 905.89 | 8.57 | 2.15 | 157.82 | 130,995.67 |
Hainan-1 | 45.32 | 1032.11 | 221.04 | 145,485.80 | 7.27 | 101.74 | 8.15 | 0 | 69.31 | 146,970.74 |
Hainan-2 | 311.18 | 12.12 | 65.52 | 116,355.10 | 0.75 | 27.35 | 6.75 | 0.23 | 93.12 | 116,872.12 |
Guizhou-1 | 37.33 | 652.26 | 73.58 | 141,150.43 | 0.95 | 10.25 | 8.15 | 0.17 | 107.05 | 142,040.17 |
Guizhou-2 | 21.47 | 374.45 | 2.76 | 57,195.84 | 2.00 | 3.97 | 1.97 | 0 | 26.25 | 57,628.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.-L.; Shu, C.; Zhang, Y.; Cui, H.-J.; Xie, X.; Ran, X.-L.; Chen, T.-S.; Zang, Z.-H.; Liu, J.-G.; Li, B. A “Green” Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius. Molecules 2019, 24, 694. https://doi.org/10.3390/molecules24040694
Tian J-L, Shu C, Zhang Y, Cui H-J, Xie X, Ran X-L, Chen T-S, Zang Z-H, Liu J-G, Li B. A “Green” Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius. Molecules. 2019; 24(4):694. https://doi.org/10.3390/molecules24040694
Chicago/Turabian StyleTian, Jin-Long, Chi Shu, Ye Zhang, Hui-Jun Cui, Xu Xie, Xu-Long Ran, Tian-Shun Chen, Zhi-Huan Zang, Jian-Guo Liu, and Bin Li. 2019. "A “Green” Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius" Molecules 24, no. 4: 694. https://doi.org/10.3390/molecules24040694
APA StyleTian, J. -L., Shu, C., Zhang, Y., Cui, H. -J., Xie, X., Ran, X. -L., Chen, T. -S., Zang, Z. -H., Liu, J. -G., & Li, B. (2019). A “Green” Homogenate Extraction Coupled with UHPLC-MS for the Rapid Determination of Diterpenoids in Croton Crassifolius. Molecules, 24(4), 694. https://doi.org/10.3390/molecules24040694