A GC-MS Protocol for Separating Endangered and Non-endangered Pterocarpus Wood Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of Heartwood Extracts of P. santalinus and P. tinctorius
2.2. Multivariate Analyses
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Sample Preparation
3.3. Apparatus and Chromatographic Conditions
3.4. Determination of Chemical Compounds
3.5. Multivariate Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scotland, N.; Ludwig, S. Deforestation, the timber trade and illegal logging. In Proceedings of the EC Workshop on Forest Law Enforcement, Governance and Trade, Brussels, Belgium, 22–24 April 2002. [Google Scholar]
- Lowe, A.J.; Dormontt, E.E.; Bowie, M.J.; Degen, B.; Gardner, S.; Thomas, D.; Clarke, C.; Rimbawanto, A.; Wiedenhoeft, A.; Yin, Y. Opportunities for improved transparency in the timber trade through scientific verification. BioScience 2016, 66, 990–998. [Google Scholar] [CrossRef]
- Wiedenhoeft, A. Best Practice Guide for Forensic Timber Identification; United Nations Office on Drugs and Crime: International Consortium on Combating Wildlife Crime. Vienna, Austria: Laboratory and Scientific Section, Global Programme for Combating Wildlife and Forest Crime: New York, NY, USA, 2016; pp. 1–226. [Google Scholar]
- Dormontt, E.E.; Boner, M.; Braun, B.; Breulmann, G.; Degen, B.; Espinoza, E.; Gardner, S.; Guillery, P.; Hermanson, J.C.; Koch, G. Forensic timber identification: It’s time to integrate disciplines to combat illegal logging. Biol. Conserv. 2015, 191, 790–798. [Google Scholar] [CrossRef]
- Mabberley, D.J. Mabberley’s Plant-book. A Portable Classifcation Of Plants, Their Classification and Uses; Cambridge University Press: Oxford, UK, 2017; p. 1102. [Google Scholar]
- Jiao, L.; Yu, M.; Wiedenhoeft, A.C.; He, T.; Li, J.; Liu, B.; Jiang, X.; Yin, Y. DNA barcode authentication and library development for the wood of six commercial Pterocarpus Species: The critical role of xylarium specimens. Sci. Rep. 2018, 8, 1945. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, D.; Kannan, E.; Bhojraj, S. Protective and therapeutic effects of the Indian medicinal plant Pterocarpus santalinus on D-galactosamine-induced liver damage. Asian J. Trad. Med. 2007, 2, 51–57. [Google Scholar]
- Grubben, G.J. Plant Resources of Tropical Africa; PROTA: Wageningen, Netherlands, 2004; pp. 491–493. [Google Scholar]
- Yu, M.; Jiao, L.; Guo, J.; Wiedenhoeft, A.C.; He, T.; Jiang, X.; Yin, Y. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta 2017, 246, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Hartvig, I.; Czako, M.; Kjær, E.D.; Nielsen, L.R.; Theilade, I. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PLoS ONE 2015, 10, e0138231. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ng, W.L.; Mahat, M.N.; Nazre, M.; Mohamed, R. DNA barcoding of the endangered Aquilaria (Thymelaeaceae) and its application in species authentication of agarwood products traded in the market. PLoS ONE 2016, 11, e0154631. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Jiao, L.; Yu, M.; Guo, J.; Jiang, X.; Yin, Y. DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches. Holzforschung 2018. [Google Scholar] [CrossRef]
- Adedipe, O.E.; Dawson-Andoh, B.; Slahor, J.; Osborn, L. Classification of red oak (Quercus rubra) and white oak (Quercus alba) wood using a near infrared spectrometer and soft independent modelling of class analogies. J. Near Infrared Spec. 2008, 16, 49–57. [Google Scholar] [CrossRef]
- Braga, J.W.B.; Pastore, T.C.M.; Coradin, V.T.R.; Camargos, J.A.A.; da Silva, A.R. The use of near infrared spectroscopy to identify solid wood specimens of swietenia macrophylla0 (Cites Appendix II). IAWA J. 2011, 32, 285–296. [Google Scholar] [CrossRef]
- Nisgoski, S.; Schardosin, F.Z.; Batista, F.R.R.; de Muñiz, G.I.B.; Carneiro, M.E. Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil. Wood Sci. Technol. 2016, 50, 71–80. [Google Scholar] [CrossRef]
- Mariey, L.; Signolle, J.; Amiel, C.; Travert, J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib. Spectrosc. 2001, 26, 151–159. [Google Scholar] [CrossRef]
- Zhang, F.D.; Xu, C.H.; Li, M.Y.; Huang, A.M.; Sun, S.Q. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy. J. Mol. Struct. 2014, 1069, 89–95. [Google Scholar] [CrossRef]
- Wang, S.N.; Zhang, F.D.; Huang, A.M.; Zhou, Q. Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. Holzforschung 2016, 70, 503–510. [Google Scholar] [CrossRef]
- Branca, C.; Giudicianni, P.; Di Blasi, C. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood. Ind. Eng. Chem. Res. 2003, 42, 3190–3202. [Google Scholar] [CrossRef]
- Vichi, S.; Santini, C.; Natali, N.; Riponi, C.; Lopez-Tamames, E.; Buxaderas, S. Volatile and semi-volatile components of oak wood chips analysed by accelerated solvent extraction (ASE) coupled to gas chromatography–mass spectrometry (GC–MS). Food Chem. 2007, 102, 1260–1269. [Google Scholar] [CrossRef]
- Liu, R.; Wang, C.; Huang, A.; Lv, B. Characterization of odors of wood by gas chromatography-olfactometry with removal of extractives as attempt to control indoor air quality. Molecules 2018, 23, 203. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Huang, A.; Zhang, S.; Liu, R.; Ma, F. Identification of three Dalbergia species based on differences in extractive components. Molecules 2018, 23, 2163. [Google Scholar] [CrossRef]
- Xue, X.L.; Zong, Z.M.; Yan, H.L.; Zheng, Q.X.; Kong, L.Y.; Wei, X.Y. Sequential extraction of oak wood sawdust and oxidative degradation of the extraction residue. Fuel Process. Technol. 2018, 179, 167–174. [Google Scholar] [CrossRef]
- Fernandez, M.P.; Watson, P.A.; Breuil, C. Gas chromatography-mass spectrometry method for the simultaneous determination of wood extractive compounds in quaking aspen. J. Chromatogr. A 2001, 922, 225–233. [Google Scholar] [CrossRef]
- Vaysi, R. Identification and comparison of chemical components in wood and bark of planted eldar pine tree by GC/MS methods. Pro Ligno 2014, 10, 21–25. [Google Scholar]
- Xu, B.; Zhu, T.; Li, J.; Liu, S. Identification of wood between Phoebe zhennan and Machilus pingii using the gas chromatography-mass spectrometry direct injection technique. Eur. J. Mass Spectrom. 2013, 19, 187–193. [Google Scholar] [CrossRef]
- Seshadri, T. Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry 1972, 11, 881–898. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Roger, A. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J. Am. Oil Chem. Soc. 1997, 74, 375–380. [Google Scholar] [CrossRef]
- Umetrics, A. User guide to SIMCA-P+ 12; Umetrics AB: Umea, Sweden, 2008. [Google Scholar]
- Gao, X.; Xie, M.; Liu, S.; Guo, X.; Chen, X.; Zhong, Z.; Wang, L.; Zhang, W. Chromatographic fingerprint analysis of metabolites in natural and artificial agarwood using gas chromatography–mass spectrometry combined with chemometric methods. J. Chromatogr. B 2014, 967, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Danhelova, H.; Vavrecka, A.; Riddellova, K.; Kocourek, V.; Vacha, F.; Hajslova, J. Evaluation of direct analysis in real time ionization-mass spectrometry (DART-MS) in fish metabolomics aimed to assess the response to dietary supplementation. Talanta 2013, 115, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
ID | RT (min) | Molecular Formula | Possible Compounds | Classification | Relative Content for P. santalinus (%) 1 | Relative Content for P. tinctorius (%) 1 | ||||
---|---|---|---|---|---|---|---|---|---|---|
EW 2 | EA 2 | BE 2 | EW 2 | EA 2 | BE 2 | |||||
1 | 14.87 | C15H26O | 2-Naphthalenemethanol,1,2,3,4,4a,5,6,7-octahydro-a,a,4a,8-tetramethyl-, (2R,4aR)- | Alcohol | 3.37 | 1.68 | 1.33 | - 3 | - | - |
2 | 15.12 | C15H26O | beta-Eudesmol | Alcohol | 6.12 (0.45) | 3.41 | 2.26 | - | - | - |
3 | 15.43 | C15H26O | α-Bisabolol | Alcohol | 3.51 | 1.64 | 1.33 | - | - | - |
4 | 15.78 | C15H24O | 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-2-ol | Alcohol | 4.16 (0.38) | - | - | - | - | - |
5 | 16.9 | C15H26O | a-Eudesmol | Alcohol | 1.59 | 1.1 | - | - | - | - |
6 | 17.41 | C15H24O | 2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-2-yl)-prop-2-en-1-ol | Alcohol | 1.32 (0.40) | - | - | - | - | - |
7 | 17.58 | C15H24O | Spathulenol | Alcohol | 46.89 (0.98) | 28.14 (0.32) | 18.44 | - | - | - |
8 | 17.81 | C15H24O | 2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-2-yl)-prop-2-en-1-ol | Alcohol | 2.03 (0.35) | 1.26 | 1.33 (0.80) | - | - | 0.74 |
9 | 17.93 | C15H24O2 | Murolan-3,9(11)-diene-10-peroxy | Miscellaneous | 1.14 | - | - | - | - | - |
10 | 18.26 | C16H22O4 | Dibutyl phthalate | Ester | 1.25 | 5.52 | 6.86 (0.35) | - | 1.25 | 3.3 |
11 | 18.32 | C15H22O | Longipinocarvone | Ketone | 1.70 (0.46) | - | - | - | - | - |
12 | 18.43 | C15H22O | 2,3,3-Trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone | Ketone | 5.77 (0.51) | 5.46 | 2.77 (0.31) | - | - | - |
13 | 23.65 | C16H16O3 | Pterostilbene | Stilbenoid | 16.51 (1.6) | 13.87 | 8.56 (0.51) | 99.2 (1.1) | 97.16 | 64.12 (0.65) |
14 | 4.1 | C8H10 | p-Xylene | Aromatic Hydrocarbons | - | 2.05 (0.66) | 41.18 (0.97) | - | - | 22.79 (0.47) |
15 | 21.45 | C16H17NO3 | 4-t-Butyl-2-[4-nitrophenyl]phenol | Miscellaneous | - | - | - | - | 1.59 | 3.06 |
16 | 22.35 | C23H32O2 | 2,2’-Methylenebis(6-tert-butyl-4-methylphenol) | Phenol | - | 5.04 | 3.26 | - | - | 1.62 |
17 | 23 | C19H38O4 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | Miscellaneous | - | 9.16 (0.42) | - | - | - | - |
18 | 24.58 | C21H42O4 | Octadecanoic acid, 2,3-dihydroxypropyl ester | Miscellaneous | - | 3.15 (0.32) | - | - | - | - |
19 | 17.34 | C16H22O4 | Diisobutyl phthalate | Ester | - | - | 5.52 | - | - | 3.22 |
20 | 24.64 | C16H12O5 | 4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy- | Flavonoid | - | - | - | - | - | 1.16 |
Models | R2X | R2Y | Q2 | Accuracy (%) |
---|---|---|---|---|
EW | 0.902 | 0.949 | 0.944 | 100.00 |
EA | 0.893 | 0.978 | 0.963 | 83.33 |
BE | 0.743 | 0.970 | 0.97 | 83.33 |
Species | Sample ID | Voucher ID | Origin | N |
---|---|---|---|---|
Pterocarpus santalinus L.f. | TX01 | Verified by DNA [6] | India | 1 |
TX03 | Verified by DNA [6] | India | 1 | |
TX04 | Verified by DNA [6] | India | 1 | |
TX14 | Roy. Bot. Gard. | India | 1 | |
TX17-TX24 | LB-03494 | India | 8 | |
Pterocarpus tinctorius Welw. | W006 | XD-01698 | Congo | 1 |
W008-3-W008-12 | XCY-00326 | Congo | 10 | |
W37619 | BR, LUA, LISC, MAD | Angola | 1 | |
W37621 | BR, LUA, LISC, MAD | Angola | 1 | |
W37622 | BR, LUA, LISC, MAD | Angola | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhao, G.; Guo, J.; Liu, B.; Jiang, X.; Yin, Y. A GC-MS Protocol for Separating Endangered and Non-endangered Pterocarpus Wood Species. Molecules 2019, 24, 799. https://doi.org/10.3390/molecules24040799
Zhang M, Zhao G, Guo J, Liu B, Jiang X, Yin Y. A GC-MS Protocol for Separating Endangered and Non-endangered Pterocarpus Wood Species. Molecules. 2019; 24(4):799. https://doi.org/10.3390/molecules24040799
Chicago/Turabian StyleZhang, Maomao, Guangjie Zhao, Juan Guo, Bo Liu, Xiaomei Jiang, and Yafang Yin. 2019. "A GC-MS Protocol for Separating Endangered and Non-endangered Pterocarpus Wood Species" Molecules 24, no. 4: 799. https://doi.org/10.3390/molecules24040799
APA StyleZhang, M., Zhao, G., Guo, J., Liu, B., Jiang, X., & Yin, Y. (2019). A GC-MS Protocol for Separating Endangered and Non-endangered Pterocarpus Wood Species. Molecules, 24(4), 799. https://doi.org/10.3390/molecules24040799