An In Silico Approach for Assessment of the Membrane Transporter Activities of Phenols: A Case Study Based on Computational Models of Transport Activity for the Transporter Bilitranslocase
Abstract
:1. Introduction
2. Results
2.1. BTL Classification Models
2.1.1. Consensus of Model Predictions
2.1.2. Application of Classification Models on Phenolic Dataset
2.2. BTL Regression Models
Application of Regression Models on Phenolic Dataset
2.3. Metrabase and Chembench Analyses
3. Discussion
4. Materials and Methods
4.1. Dataset
4.2. Computational Analysis
4.2.1. Molecular Descriptors
4.2.2. Generation of Models
4.2.3. Statistical Evaluation of Models
4.3. Metrabase and Chembench Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability and evidence of protective effects against chronic diseases. Antioxid. Redox. Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harborne, J.B. Plant phenolics. In Encyclopedia of Plant Physiology, Volume 8: Secondary Plant Products; Bell, E.A., Charlwood, B.V., Eds.; Springer: Berlin, Germany; New York, NY, USA, 1980; pp. 329–395. [Google Scholar]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, R.L.; Vermerris, W. Phenolic compound biochemistry; Springer: Berlin, Germany, 2006; pp. 107–108. [Google Scholar]
- FooDB version 1.0. Available online: www.foodb.ca (accessed on 15 October 2018).
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P. New Insights on the Anticancer Properties of Dietary Polyphenols. Med. Res. Reviews 2006, 26, 747–766. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Internat. 2006, 48, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Rasines-Perea, Z.; Teissedre, P.L. Grape Polyphenols’ Effects in Human Cardiovascular Diseases and Diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.I.; Sulaiman, S.A. The potential role of honey and its polyphenols in preventing heart diseases: A review. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.F.L.; Calheiros, R.; Fiuza, S.M.; Borges, F.; Gaspar, A.; Garrido, J.; Marques, M.P. Phenolic esters with potential anticancer activity—The structural variable. J. Mol. Model. 2007, 13, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Bauvois, B.; Puiffe, M.L.; Bongui, J.B.; Paillat, S.; Monneret, C.; Dauzonne, D. Synthesis and Biological Evaluation of Novel Flavone-8-acetic Acid Derivatives as Reversible Inhibitors of Aminopeptidase N/CD13. J. Med. Chem. 2003, 46, 3900–3913. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, C.; Rosso, R.; Santos-Silva, M.C.; de Souza, C.A.; Licínio, M.A.; Leal, P.; Bazzo, M.L.; Yunes, R.A.; Creczynski-Pasa, T.B. Ester derivatives of gallic acid with potential toxicity toward L1210 leukemia cells. Bioorg. Med. Chem. 2008, 16, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine Flavonoids in Health and Disease Prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Fiuza, S.M.; Gomes, C.; Teixeira, L.J.; Girão da Cruz, M.T.; Cordeiro, M.N.D.S.; Milhazes, N.; Borges, F.; Marques, M.P.M. Phenolic acid derivatives with potential anticancer properties—A structure-activity relationship study. Part 1: Methyl. propyl and octyl esters of caffeic and gallic acids. Bioorg. Med. Chem. 2004, 12, 3581–3589. [Google Scholar] [CrossRef] [PubMed]
- Sergedienė, E.; Jönsson, K.; Szymusiak, H.; Tyrakowska, B.; Rietjens, I.M.C.M.; Čėnas, N. Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: Description of quantitative structure-activity relationships. FEBS Lett. 1999, 462, 392–396. [Google Scholar] [CrossRef]
- Nemeikaitė-Čėnienė, A.; Imbrasaitė, A.; Sergedienė, E.; Čėnas, N. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: Role of potential of phenoxyl radical/phenol redox couple. Archives Biochem. Biophys. 2005, 441, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.A.; da Cruz, T.G.; Andrade, J.L.; Milhazes, N.; Borges, F.; Marques, M.P.M. Anticancer activity of phenolic acids of natural or synthetic origin: A structure-activity study. J. Med. Chem. 2003, 46, 5395–5401. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, T.; Banskota, A.H.; Tezuka, Y.; Saiki, I.; Kadota, S. Selective antiproliferative activity of caffeic acid phenethyl aster analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg. Med. Chem. 2002, 10, 3351–3359. [Google Scholar] [CrossRef]
- Blank, V.C.; Poli, C.; Marder, M.; Roguin, L.P. 2004 Antiproliferative activity of various flavonoids and related compounds: Additive effect of interferon-α2b. Bioorg. Med. Chem. Lett. 2004, 14, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.; Park, S.K.; Kim, H.M.; Choi, Y.; Kim, M.H.; Park, C.H.; Joe, B.Y.; Chun, T.G.; Choi, H.M.; Lee, H.Y.; et al. Chromen-based TNF-α converting enzyme (TACE) inhibitors: Design synthesis and biological evaluation. Bioorg. Med. Chem. 2008, 16, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Don, M.J.; Liao, C.H.; Chiou, H.W.; Chen, C.F.; Ho, L.K. Effects of phenolic acid esters and amides on stimulus-induced reactive oxygen species production in human neutrophils. Clin. Chim. Acta 2005, 352, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Differential effects of synthesized 2′-oxygenated chalcone derivatives: Modulation of human cell cycle phase distribution. Bioorg. Med. Chem. 2004, 12, 2679–2686. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.Y.; Fang, S.H.; Tzeng, Y.M. Synthesis, growth inhibition, and cell cycle evaluations of novel flavonoid derivatives. Bioorg. Med. Chem. 2005, 13, 6850–6855. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.H.; Rao, Y.K.; Tzeng, Y.M. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ-activated murine macrophages. Bioorg. Med. Chem. 2005, 13, 2381–2388. [Google Scholar] [CrossRef] [PubMed]
- Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, M.; Marder, M.; Blank, V.C.; Roguin, L.P. Antitumor activity of some natural flavonoids and derivatives on various human and maurine cancer cell lines. Bioorg. Med. Chem. 2006, 14, 2966–2971. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Serafim, T.L.; Carvalho, F.S.; Maeques, M.P.M.; Chaleiros, R.; Silva, T.; Garrido, J.; Milhazes, N.; Borges, F.; Roleira, F.; Silva, E.T.; et al. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol. 2011, 24, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, J.-J.; Wang, J.; Yang, X.-L.; Cai, P.; Liu, Q.-H.; Kong, L.-Y.; Wang, X.-B. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem. 2017, 25, 3815–3826. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.T.; Das, S.; Ridell, J.; Smid, S.D. Structure-activity relationships for flavone interactions with amyloid reveal a novel anti-aggregatory and neuroprotective effect of 2′,3′,4′-trihydroxyflavone (2-D08). Bioorg. Med. Chem. 2017, 25, 3827–3834. [Google Scholar] [CrossRef] [PubMed]
- Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.F.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol. 2007, 165, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Ramesy, C. Bioavailability and bioefficacy of polyphenols in humans. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, S.; Terdoslavich, M.; Franca, R.; Vanzo, A.; Tramer, F.; Braidot, E.; Petrussa, E.; Vianello, A. Bioavailability of flavonoids: A review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr. Drug Metabol. 2009, 10, 369–394. [Google Scholar] [CrossRef]
- Mennen, L.I.; Sapinho, D.; Ito, H.; Galan, P.; Hercberg, S.; Scalbert, A. Urinary excretion of 13 dietary flavonoids and phenolic acids in free-living healthy subjects - variability and possible use as biomarkers of polyphenol intake. Eur. J. Clin. Nutr. 2008, 62, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Xie, H. Activity assay of membrane transport proteins. Acta Biochim. Biophys. Sin. 2008, 40, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billat, P.A.; Roger, A.; Faure, S.; Lagarce, F. Models for drug absorption from the small intestine: Where are we and where are we going? Drug Discovery Today 2017, 22, 761–775. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, T.; van Westen, G.J.P.; Jzerman, A.P.I.; Stieger, B.; de Witte, P.; Augustijns, P.F.; Annaert, P.P. Structure-Based Identification of OATP1B1/3 Inhibitors. Mol. Pharmacol. 2013, 83, 1257–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venko, K.; Roy Choudhury, A.; Novič, M. Computational Approaches for Revealing the Structure of Membrane Transporters: Case Study on Bilitranslocase. Comput. Struct. Biotech. J. 2017, 15, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Naveed, H.; Jimenez-Morales, D.; Adamian, L.; Lin, M. Computational studies of membrane proteins: Models and predictions for biological understanding. Biochim. Biophys. Acta 2012, 1818, 927–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russel, D.; Lasker, K.; Webb, B.; Velázquez-Muriel, J.; Tjioe, E.; Schneidman-Duhovny, D.; Peterson, B.; Sali, A. Putting the pieces together: Integrative structure determination of macromolecular assemblies. PLoS Biol. 2012, 10, e1001244. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shen, Q.; Liu, X.; Lu, J.; Li, S.; Luo, C.; Gong, L.; Luo, X.; Zheng, M.; Jiang, H. Computational models for predicting interactions with membrane transporters. Curr. Med. Chem. 2013, 20, 2118–2136. [Google Scholar] [CrossRef] [PubMed]
- Sedykh, A.; Fourches, D.; Duan, J.; Hucke, O.; Garneau, M.; Zhu, H.; Bonneau, P.; Tropsha, A. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013, 30, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Ray, A.; Swaan, P. In silico strategies for modeling membrane transporter function. Drug Discovery Today 2005, 10, 663–671. [Google Scholar] [CrossRef]
- Mak, L.; Marcus, D.; Howlett, A.; Yarova, G.; Duchateau, G.; Klake, W.; Bender, A.; Glen, R.C. Metrabase: A cheminformatics and bioinformatics database for small molecule transporter data analysis and (Q)SAR modeling. J. Cheminform. 2015, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Elbourne, L.D.H.; Tetu, S.; Hassan, K.; Paulsen, I.T. TransportDB 2.0: A database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017, 45, D320–D324. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H.; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. (The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016, 44, D372–D379. [Google Scholar] [CrossRef] [PubMed]
- Battiston, L.; Passamonti, S.; Macagno, A.; Sottocasa, G.L. The bilirubin-binding motif of bilitranslocase and its relation to conserved motifs in ancient biliproteins. Biochem. Biophys. Res. Commun. 1998, 247, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. Organic anion transporting polypeptide 1B1: A genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 2011, 63, 157–181. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, S.; Terdoslavich, M.; Margon, A.; Cocolo, A.; Medic, N.; Micali, F.; Decorti, G.; Franko, M. Uptake of bilirubin into HepG2 cells assayed by thermal lens spectroscopy. Function of bilitranslocase. FEBS J. 2005, 272, 5522–5535. [Google Scholar] [CrossRef] [PubMed]
- Čvorović, J.; Passamonti, S. Membrane transporters for bilirubin and its conjugates: A systematic review. Front. Pharmacol. 2017, 8, 887. [Google Scholar] [CrossRef] [PubMed]
- Karawajczyk, A.; Drgan, V.; Medic, N.; Oboh, G.; Passamonti, S.; Novič, M. Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modelling. Biochem. Pharm. 2007, 73, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Župerl, Š.; Fornasaro, S.; Novič, M.; Passamonti, S. Experimental determination and prediction of bilitranslocase transport activity. Anal. Chim. Acta 2011, 705, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Maestro, A.; Terdoslavich, M.; Vanzo, A.; Kuku, A.; Tramer, F.; Nicolin, V.; Micali, F.; Decorti, G.; Passamonti, S. Expression of bilitranslocase in the vascular endothelium and its function as a flavonoid transporter. Cardiovasc. Res. 2010, 85, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Nicolin, V.; Grill, V.; Micali, F.; Narducci, P.; Passamonti, S. Immunolocalisation of bilitranslocase in mucosecretory and parietal cells of the rat gastric mucosa. J. Mol. Histol. 2005, 36, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Brandoni, A.; Di Giusto, G.; Franca, R.; Passamonti, S.; Torres, A.M. Expression of kidney and liver bilitranslocase in response to acute biliary obstruction. Nephron. Physiol. 2010, 114, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Čvorović, J.; Ziberna, L.; Fornasaro, S.; Tramer, F.; Passamonti, S. Bioavailability of Flavonoids: The Role of Cell Membrane Transporters. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2018; pp. 295–320. [Google Scholar]
- Martinčič, R.; Venko, K.; Župerl, Š.; Novič, M. Chemometrics approach for the prediction of structure-activity relationship for membrane transporter bilitranslocase. SAR QSAR Env. Res. 2014, 25, 853–872. [Google Scholar] [CrossRef] [PubMed]
- Montanic, S.; Terdoslavich, M.; Rajcevic, U.; De Leo, L.; Bonin, S.; Curin Serbec, V.; Passamonti, S. Development and characterization of a novel mAb against bilitranslocase—A new biomarker of renal carcinoma. Radiol. Oncol. 2013, 47, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Golijanin, D.J.; Marshall, J.; Cardin, A.; Singer, E.A.; Wood, R.W.; Reeder, J.E.; Wu, G.; Yao, J.L.; Passamonti, S.; Messing, E.M. Bilitranslocase (BTL) is immunolocalised in proximal and distal renal tubules and absent in renal cortical tumors accurately corresponding to intraoperative near infrared fluorescence (NIRF) expression of renal cortical tumors using intravenous indocyanine green (ICG). J. Urol. 2008, 179, 137. [Google Scholar]
- Roy Choudhury, A.; Sikorska, E.; van den Boom, J.; Bayer, P.; Popenda, L.; Szutkowski, K.; Jurga, S.; Bonomi, M.; Sali, A.; Zhukov, I.; et al. Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data. PLoS ONE 2015, 10, e0135455. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, S.; Vrhovsek, U.; Vanzo, A.; Mattivi, F. The stomach as a site for anthocyanins absorption from food. FEBS Lett. 2003, 544, 210–213. [Google Scholar] [CrossRef]
- Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. Model. 2012, 52, 2044–2058. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, R.; Consonni, V.; Gramatica, P. Chemometrics in QSAR. In Comprehensive Chemometrics, Volume 4; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; pp. 129–172. [Google Scholar]
- Ruiz, I.L.; Gómez-Nieto, M.A. Study of the Applicability Domain of the QSAR Classification Models by Means of the Rivality and Modelability Indexes. Molecules 2018, 23, 2756. [Google Scholar] [CrossRef] [PubMed]
- Minovski, N.; Župerl, Š.; Drgan, V.; Novič, M. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: A case study. Anal. Chim. Acta 2013, 759, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P.; Chirico, N.; Papa, E.; Kovarich, S.; Cassani, S. QSARINS: A New Software for the Development, Analysis, and Validation of QSAR MLR Models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
- Marzo, M.; Kulkarni, S.; Manganaro, A.; Roncaglioni, A.; Wu, S.; Barton-Maclaren, T.S.; Lester, C.; Benfenati, E. Integrating in silico models to enhance predictivity for developmental toxicity. Toxicology 2016, 370, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Q.; Morris, M.E. Pharmacokinetic interaction between the flavonoid luteolin and gamma-hydoxybutyrate in rats: Potential involvement of monocarboxylate transporters. APPS J. 2008, 10, 47–55. [Google Scholar]
- Piskula, M.K.; Yamakoshi, J.; Iwai, Y. Daizdein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett. 1999, 447, 287–291. [Google Scholar] [CrossRef]
- Roy, P.P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules 2009, 14, 1660–1701. [Google Scholar]
- Rodriguez-Morato, J.; Xicota, L.; Fito, M.; Farre, M.; Dierssen, M.; de la Torre, R. Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 2015, 20, 4655–4680. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.C.; Yoseph, B.A.; Dessale, T.; Daniel, R.S.; Alemayehu, A.; Campbell, I.W.; Augusti, K.T. Hypolipidaemic effect of leucodelphinidin derivative from Ficus bengalensis (Linn) on cholesterol fed rats. Res. J. Chem. Sci. 2012, 2, 54–60. [Google Scholar]
- Terdoslavich, M.; de Graaf, I.A.M.; Proost, J.H.; Cocolo, A.; Passamonti, S.; Groothuis, G.M.M. Bilitranslocase is Involved in the Uptake of Bromosulfophthalein in Rat and Human Liver. Drug Metab. Lett. 2012, 6, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Bielen, L.; Kralj, I.; Ćurčić, E.; Vodanović, M.; Boban, A.; Božina, N. Acute kidney injury, agranulocytosis, drug-induced liver injury, and posterior reversible encephalopathy syndrome caused by high-dose methotrexate—Possible role of low activity ABC and SLC drug transporters. Eu. J. Clinic. Pharmacol. 2018, 74, 1191–1192. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.G.E. New Horizons in Predictive Drug Metabolism and Pharmacokinetics; Royal Society of Chemistry: Cambridge, UK, 2015; p. 422. [Google Scholar]
- Zhang, G.; Ren, Y. Molecular Modeling and Design Studies of Purine Derivatives as Novel CDK2 Inhibitors. Molecules 2018, 23, 2924. [Google Scholar] [CrossRef] [PubMed]
- Matyugina, E.; Khandazhinskaya, A.; Chernousova, L.; Andreevskaya, S.; Smirnova, T.; Chizhov, A.; Karpenko, I.; Kochetkov, S.; Alexandrova, L. The synthesis and antituberculosis activity of 50-nor carbocyclic uracil derivatives. Bioorg. Med. Chem. 2012, 20, 6680–6686. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Mizuhara, T.; Shimura, K.; Murayama, H.; Ohno, H.; Oishi, S.; Matsuoka, M.; Fujii, N. Identification of anti-HIV agents with a novel benzo [4,5]isothiazolo[2,3-a]pyrimidine scaffold. Bioorg. Med. Chem. 2015, 23, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Sosnin, S.; Vashurina, M.; Withnall, M.; Karpov, P.; Fedorov, M.; Tetko, I.V. A Survey of Multi-Task Learning Methods in Chemoinformatics. Mol. Inf. 2018, 37, 1800108. [Google Scholar] [CrossRef] [PubMed]
- Simões, R.S.; Maltarollo, V.G.; Oliveira, P.R.; Honorio, K.M. Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges. Front. Pharmacol. 2018, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Žitnik, M.; Zupan, B. Matrix factorization-based data fusion for drug-induced liver injury prediction. Systems Biomed. 2014, 2, 16–22. [Google Scholar] [CrossRef]
- Worth, A.P. The future of in silico chemical safety … and beyond. Comput. Toxicol. 2019, 10, 60–62. [Google Scholar] [CrossRef]
- Dias, M.M.; Machado, N.F.L.; Marques, M.P.M. Dietary chromomes as antioxidant agents—the structural variable. Food Funct. 2011, 2, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Martins, F.; Rodrigues, V.; Chalheiros, R.; Marques, M.P.M. Characterization of antioxidant olive oil biophenols by spectroscopic methods. J. Sci. Food Agric. 2011, 91, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L.; Farina, R.; Nicolotti, O.; Gadaleta, D.; Soto-Otero, R.; Catto, M.; Di Braccio, M.; Mendez-Alvarez, E.; Carotti, A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur. J. Med. Chem. 2015, 89, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.Z.; Küçükislamoğlu, M.; Tuna, M. Synthesis and characterization of novel flavonoid-substituted phthalocyanines using (±)naringenin. J. Organometal. Chem. 2009, 694, 4152–4161. [Google Scholar] [CrossRef]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Petrussa, E.; Braidot, E.; Zancani, M.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013, 14, 14950–14973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, F.A.M.; Borges, F.; Guimarães, C.; Lima, J.L.F.C.; Matos, C.; Reis, S. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food Chem. 2000, 48, 2122–2126. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–582. [Google Scholar] [CrossRef]
- Martinčič, R.; Mravljak, J.; Švajger, U.; Perdih, A.; Andreluh, M.; Novič, M. In silico discovery of novel potent antioxidants on the basis of pulvinic acid and coumarin derivatives and their experimental evaluation. PLoS ONE 2015, 10, e0140602. [Google Scholar] [CrossRef] [PubMed]
- Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909. [Google Scholar]
- Katritzky, A.R.; Lobanov, V.S.; Karelson, M. Codessa 2.0. Comprehensive descriptors for structural and statistical analysis; University of Florida: Gainesville, FL, USA, 1994. [Google Scholar]
- Dragon 7.0—Software for molecular descriptors calculation. 2016. Available online: https://chm.kode-solutions.net/products_dragon.php (accessed on 20 August 2018).
- Drgan, V.; Župerl, Š.; Vračko, M.; Cappelli, C.I.; Novič, M. CPANNatNIC software for counter-propagation neural network to assist in read-across. J. Cheminform. 2017, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Drgan, V.; Župerl, Š.; Vračko, M.; Como, F.; Novič, M. Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm. SAR QSAR Environ. Res. 2016, 27, 501–519. [Google Scholar] [CrossRef] [PubMed]
- Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 2017, 12, e0177678. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognition Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Metrabase. Available online: www-metrabase.ch.cam.ac.uk (accessed on 20 November 2018).
- Chembench. Available online: https://chembench.mml.unc.edu (accessed on 4 December 2018).
Models Availability: Newly developed classification models for the prediction of bilitranslocase transport activity are available upon request from the authors. |
Single Models | 2-Model Consensus | 3-Model Consensus | |||||||
---|---|---|---|---|---|---|---|---|---|
NN-C | NN-D | Q-D | NN-C + NN-D | NN-C + Q-D | NN-C + Q-D | A | B | A + B | |
TP | 44 | 44 | 46 | 33 | 33 | 41 | 29 | 19 | 48 |
TN | 61 | 65 | 58 | 47 | 49 | 55 | 45 | 17 | 62 |
FP | 9 | 5 | 12 | 6 | 2 | 1 | 1 | 7 | 8 |
FN | 6 | 6 | 4 | 0 | 2 | 0 | 0 | 2 | 2 |
∑ | 120 | 120 | 120 | 86 | 86 | 97 | 75 | 45 | 120 |
PR | 1 (0.98) | 1 (0.92) | 1 (0.97) | 0.72 | 0.72 | 0.81 | 0.62 | 0.37 | 1 |
SE | 0.88 | 0.88 | 0.92 | 1.00 | 0.94 | 1.00 | 1.00 | 0.90 | 0.96 |
SP | 0.87 | 0.93 | 0.83 | 0.89 | 0.96 | 0.98 | 0.98 | 0.71 | 0.89 |
ACC | 0.88 | 0.91 | 0.87 | 0.93 | 0.95 | 0.99 | 0.99 | 0.80 | 0.92 |
NPV | 0.91 | 0.92 | 0.94 | 1.00 | 0.96 | 1.00 | 1.00 | 0.89 | 0.97 |
PPV | 0.83 | 0.90 | 0.79 | 0.85 | 0.94 | 0.98 | 0.97 | 0.73 | 0.86 |
MCC | 0.75 | 0.81 | 0.74 | 0.87 | 0.90 | 0.98 | 0.97 | 0.62 | 0.84 |
Model ID. | Type | No. of Descriptors | ACCTR | ACCV | Predict Ratio [%] | No. of Active Compound Predictions | ||
---|---|---|---|---|---|---|---|---|
BTL Dataset | Phenols | BTL Dataset | Phenols | |||||
NN-C | CP-ANN | 66 | 0.93 | 0.74 | 100 (97) | 100 (94) | 54 (51) | 75 (74) |
NN-D | CP-ANN | 18 | 0.92 | 0.87 | 100 (92) | 100 (69) | 49 (46) | 138 (100) |
Q-D | MLR | 11 | 0.88 | 0.77 | 100 (97) | 100 (93) | 58 (55) | 72 (68) |
A + B | 3 cons | / | 0.93 | 0.87 | 100 (99) | 100 (100) | 56 (55) | 65 (65) |
A | 3 cons | / | 1.00 | 0.92 | 62 (62) | 36 (36) | 30 (30) | 15 (15) |
NN-D + Q-D | 2 cons | / | 1.00 | 0.96 | 81 (81) | 50 (50) | 42 (42) | 31 (31) |
Protein Symbol | Gene Symbol | Name | Tissue Expression Data |
---|---|---|---|
MDR1 M,C | ABCB1 | ATP-binding cassette sub-family B member 1, P-glycoprotein | intestine, kidney, liver, brain |
BSEP C | ABCB11 | ATP binding cassette subfamily B member 11 | liver |
MRP1 M,C | ABCC1 | ATP-binding cassette, sub-family C member 1 | intestine, kidney, liver, brain |
MRP2 M,C | ABCC2 | ATP-binding cassette sub-family C member 2 | stomach, intestine, kidney, liver, brain |
MRP3 M,C | ABCC3 | ATP-binding cassette sub-family C member 3 | stomach, intestine, kidney, liver, brain |
MRP4 M,C | ABCC4 | ATP-binding cassette, sub-family C member 4 | stomach, intestine, kidney, liver, brain |
MRP5 C | ABCC5 | ATP Binding Cassette Subfamily C member 5 | kidney, brain |
BCRP1 M,C | ABCG2 | ATP-binding cassette sub-family G member 2 | stomach, intestine, kidney, liver, brain |
OATP1A2 M | SLCO1A2 | solute carrier organic anion transporter family member 1A2 | kidney, liver, brain |
OATP2A1 M | SLCO2A1 | solute carrier organic anion transporter family member 2A1 | intestine, kidney, liver, brain |
OATP1B1 M | SLCO1B1 | solute carrier organic anion transporter family member 1B1 | liver |
OATP1B3 M | SLCO1B3 | solute carrier organic anion transporter family member 1B3 | liver |
OATP2B1 M,C | SLCO2B1 | solute carrier organic anion transporter family member 2B1 | intestine, kidney, liver, brain |
OATP3A1 M | SLCO3A1 | solute carrier organic anion transporter family member 3A1 | intestine, kidney, liver, brain |
OATP4A1 M | SLCO4A1 | solute carrier organic anion transporter family member 4A1 | stomach, intestine, kidney, liver, brain |
GLUT1 M | SLC2A1 | solute carrier family 2 (facilitated glucose transporter) member 1 | intestine, kidney, liver, brain |
NTCP C | SLC10A1 | solute carrier family 10 member 1 | liver |
ASBT C | SLC10A2 | solute carrier family 10 Member 2 | intestine |
PEPT1 C | SLC15A1 | solute carrier family 15 member 1 | intestine |
MCT1 M,C | SLC16A1 | solute carrier family 16 member 1, monocarboxylic acid transporter 1 | stomach, intestine, kidney, liver, brain |
OCT1 M,C | SLC22A1 | solute carrier family 22 (organic cation transporter) member 1 | intestine, kidney, liver |
BTL * | / | bilitranslocase, bilirubin membrane transporter | stomach, intestine, kidney, liver |
Model | R2tr | RMSEiv | R2iv | Q2F3iv | CCCiv | R2ev | Q2F3ev | CCCev | RMSEall | CCCall | rm2(all) |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | 0.996 | 0.266 | 0.949 | 0.957 | 0.970 | 0.872 | 0.927 | 0.939 | 0.198 | 0.987 | 0.821 |
M2 | 0.999 | 0.280 | 0.943 | 0.953 | 0.968 | 0.842 | 0.909 | 0.927 | 0.206 | 0.986 | 0.812 |
M3 | 0.998 | 0.289 | 0.939 | 0.950 | 0.964 | 0.839 | 0.908 | 0.934 | 0.213 | 0.985 | 0.806 |
M4 | 0.995 | 0.295 | 0.937 | 0.948 | 0.964 | 0.760 | 0.863 | 0.899 | 0.243 | 0.980 | 0.776 |
Acronym | Quality Indicator | Formula |
---|---|---|
TP | true positive | |
TN | true negative | |
FP | false positive | |
FN | false negative | |
PR | predict ratio | predicted compounds/total compounds |
SE, TPR | sensitivity, true positive rate | TP/(TP + FN) |
SP, TNR | specificity, true negative rate | TN/(TN + FP) |
ACC | accuracy | (SP + SE)/2 |
NPV | negative predictive value | TN/(TN + FN) |
PPV | positive predictive value, precision | TP/(TP + FP) |
MCC | Matthews correlation coefficient | ((TP*TN)-(FP*FN))/√[(TP + FP)(TP + FN)(TN + FP)(TN + FN)] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venko, K.; Novič, M. An In Silico Approach for Assessment of the Membrane Transporter Activities of Phenols: A Case Study Based on Computational Models of Transport Activity for the Transporter Bilitranslocase. Molecules 2019, 24, 837. https://doi.org/10.3390/molecules24050837
Venko K, Novič M. An In Silico Approach for Assessment of the Membrane Transporter Activities of Phenols: A Case Study Based on Computational Models of Transport Activity for the Transporter Bilitranslocase. Molecules. 2019; 24(5):837. https://doi.org/10.3390/molecules24050837
Chicago/Turabian StyleVenko, Katja, and Marjana Novič. 2019. "An In Silico Approach for Assessment of the Membrane Transporter Activities of Phenols: A Case Study Based on Computational Models of Transport Activity for the Transporter Bilitranslocase" Molecules 24, no. 5: 837. https://doi.org/10.3390/molecules24050837
APA StyleVenko, K., & Novič, M. (2019). An In Silico Approach for Assessment of the Membrane Transporter Activities of Phenols: A Case Study Based on Computational Models of Transport Activity for the Transporter Bilitranslocase. Molecules, 24(5), 837. https://doi.org/10.3390/molecules24050837