Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Headspace, Volatile, and Semi-Volatile Organic Compounds
2.2. Fatty Acids Composition
2.3. Antifungal Activity
3. Materials and Methods
3.1. Chemicals
3.2. Marine Alga Codium bursa
Preparation of C. bursa for Further Analysis
- Before HS-SPME and HD, fresh C. bursa (50 g; F-CB; Figure 1a) was taken out of the bag, cut into small pieces with laboratory knife, and the excess of seawater was removed by placing the pieces between filter paper layers for 2 min (the seawater was not removed completely) as was done in our previous research [53].
- The mass of 50 g of fresh C. bursa was cut as described above and dried at room temperature in the dark for 10 days, and the air-dried sample was obtained (D-CB).
- Fresh C. Bursa (500 g) was washed five times in water and twice in deionized water. For the freeze-drying experiment the samples were cut in slices (from 5 to 10 mm) and frozen at −60 °C for 24 h in an ultra-low freezer. Five trays of frozen samples were placed in a laboratory freeze dryer (CoolSafe PRO, Labogene, Denmark). The freeze drying process was performed for 24 h under high vacuum (0.13–0.55 hPa) with primary and secondary drying temperatures of −30 °C and 20 °C, respectively. Freeze-dried samples (Figure 1b; FD-CB) were further used for determination of antifungal activity and fatty acids content as well as for supercritical CO2 extraction (SC-CO2).
3.3. Headspace Solid-Phase Microextraction (HS-SPME)
3.4. Hydrodistillation (HD)
3.5. Supercritical CO2 Extraction (SC-CO2)
3.6. Gas Chromatography and Mass Spectrometry Analysis of VOCs
3.7. GC-FID Analysis of Fatty Acids
3.8. Antifungal Testing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implication for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Guzman, M.; Rodriguez-Nogales, A.; Algieri, F.; Galvez, J. Potential Role of Seaweed Polyphenols in Cardiovascular-Assiciated Disorders. Mar. Drugs 2018, 16, 250. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, M.T.; Vale, C.; Rauter, A.P. Halogenated Compounds from Marine Algae. Mar. Drugs 2010, 8, 2301–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goecke, F.; Hernandez, V.; Bittner, M.; Gonzalez, M.; Becerra, J.; Silva, M. Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile. Revista de biologia marina y oceanografia 2010, 45, 325–330. [Google Scholar] [CrossRef]
- Xu, X.-Q.; Tran, V.-H.; Kraft, G.; Beardall, J. Fatty acids of six Codium species from Southeast Australia. Phytochemistry 1998, 48, 1335–1339. [Google Scholar] [CrossRef]
- Aknin, M.; Moellet-Nzaou, R.; Cisse, E.; Kornprobst, J.M.; Gaydou, E.M.; Samb, A.; Miralles, J. Fatty acid composition of twelve species of Chlorophyceae from the Senegalese coast. Phytochemistry 1992, 31, 2739–2741. [Google Scholar] [CrossRef]
- Napoli, L.; Magno, S.; Mayol, L.; Novellino, E. Sterol composition of some Mediterranean green algae. Phytochemistry 1982, 21, 1993–1994. [Google Scholar] [CrossRef]
- Yin, S.-W.; Wang, C.-Y.; Li, X.-M.; Wang, B.-G. A new clerosterol derivative, trans-phytol, and related metabolites from marine green alga Codium fragile (Codiaceae) and their chemotaxonomic significance. Biochem. Syst. Ecol. 2005, 33, 1288–1292. [Google Scholar] [CrossRef]
- Shameel, M. Phycochemical studies on fatty acids from certain seaweeds. Bot. Mar. 1990, 33, 429–432. [Google Scholar] [CrossRef]
- Schmid, M.; Guiheneuf, F.; Stengel, D.B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J. Apply. Phycol. 2014, 26, 451–463. [Google Scholar] [CrossRef]
- Lopez-Perez, O.; Picon, A.; Nunez, M. Volatile compounds and odour characteristics of seven species of dehydrated cedible seaweeds. Food Res. Int. 2016, 99, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Gressler, V.; Colepicolo, P.; Pinto, E. Useful Strategies for Algal Volatile Analysis. Curr. Anal. Chem. 2009, 5, 271–292. [Google Scholar] [CrossRef]
- Karabay-Yavasoglu, N.U.; Sukatar, A.; Ozdemir, G.; Horzum, Z. Antimicrobial Activity of Volatile Components and Various Extracts of the Red Alga Jania rubens. Phyther. Res. 2007, 21, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, G.; Horzum, Z.; Sukatar, A.; Karabay-Yavasoglu, N.U. Antimicrobial Activities of Volatile Components and Various Extracts of Dictopteris membranaceae and Cystoseira barbata from the Coas of Izmir, Turkey. Pharm. Biol. 2006, 44, 183–188. [Google Scholar] [CrossRef]
- Yilmaz Koz, F.F.; Karabay Yavasoglu, N.U.; Demirel, Z.; Sukatar, A.; Ozdemir, G. Antioxidant and Antimicrobial Activities of Codium fragile (Suringar) Hariot (Chlorophyta) Essential Oil and Extracts. Asian J. Chem. 2009, 21, 1197–1209. [Google Scholar]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Abreu, M.H.; Rocha, S.M.; Silvestre, A.J.D. Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals. Food Chem. 2015, 183, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Maruti, A.; Duran-Guerrero, E.; Barroso, C.G.; Castro, R. Optimization of a multiple headspace sorptive extraction method couled to gas chromtography-mass spectrometry for the determination of volatile compounds in macroalgae. J. Chromatogr. A 2018, 1551, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Frikha, F.; Kammoun, M.; Hammami, N.; Mchirgui, R.A.; Belbahri, L.; Gargouri, Y.; Miled, N.; Ben-Rebah, F. Chemical composition and some biological activities of marine algae collected in Tunisia. Cien. Mar. 2011, 37, 113–124. [Google Scholar] [CrossRef]
- Moubayed, N.M.S.; Al Houri, H.J.; Al Khulaifi, M.M.; Al Farraj, D.A. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J. Biol. Sci. 2017, 24, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celikler, S.; Vatan, O.; Yildiz, G.; Bilaloglu, R. Evaluation of anti-oxidative, genotoxic and antigenotoxic potency of Codium tomentosum Stackhouse ethanolic extract in human lymphocytes in vitro. Food Chem. Toxicol. 2009, 47, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Surget, G.; Roberto, V.P.; Le Lann, K.; Mira, S.; Guerard, F.; Laize, V.; Poupart, N.; Leonor Cancela, M.; Stiger-Pouvreau, V. Marine green macroalgae: A source of natural compounds with mineralogenic and antioxidant activities. J. Appl. Phycol. 2017, 29, 575–584. [Google Scholar] [CrossRef]
- Kim, A.D.; Lee, Y.; Kang, S.-H.; Kim, G.Y.; Kim, H.S.; Hyun, J.W. Cytotoxic Effect of Clerosterol Isolated from Codium fragile on A2058 Human Melanoma Cells. Mar. Drugs 2013, 11, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Sheu, J.-H.; Liaw, C.-C.; Duh, C.-Y. Oxygenated clerosterols isolated from the marine alga Codium arabicum. J. Nat. Prod. 1995, 58, 1521–1526. [Google Scholar] [CrossRef]
- Chiheb, I.; Riadi, H.; Martinez-Lopez, J.; Dominguez Seglar, J.F.; Gomez Vidal, J.A.; Bouziane, H.; Kadiri, M. Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. Afr. J. Biotechnol. 2009, 8, 1258–1262. [Google Scholar] [CrossRef]
- Fernandez, P.V.; Arata, P.X.; Ciancia, M. Polysaccharides from Codium Species: Chemical Structure and Biological Activity. Their Role as Components of the Cell Wall. In Sea Plants. Advances in Botanical Research; Bourgougnon, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 253–278. ISBN 978-0-12-408062-1. [Google Scholar]
- Vaque, D.; Agusti, S.; Duarte, C.M.; Enriquez, S.; Geertz-Hansen, O. Microbial heterotrophs within Codium bursa: A naturally isolated microbial food web. Mar. Ecol. Prog. Ser. 1994, 109, 275–282. [Google Scholar] [CrossRef]
- Vidondo, B.; Duarte, C.M. Seasonal growth of Codium bursa, a slow-growing Mediterranean macroalga: In situ experimental evidence of nutrient limitation. Mar. Ecol. Prog. Ser. 1995, 123, 185–191. [Google Scholar] [CrossRef]
- Geertz-Hansen, O.; Enriquez, S.; Duarte, C.M.; Agusti, S.; Vaque, D.; Vidondo, B. Functional implications of the form of Codium bursa, a balloon-like Mediterranean macroalga. Mar. Ecol. Prog. Ser. 1994, 108, 153–160. [Google Scholar] [CrossRef]
- Malin, G.; Kirst, G.O. Algal production of dimethyl sulfide and its atmospheric role. J. Phycol. 1997, 33, 889–896. [Google Scholar] [CrossRef]
- Sunda, W.; Kieber, D.J.; Kiene, R.P.; Huntsman, S. An antioxidant function of DMSP and DMS in marine algae. Nature 2002, 48, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Lyons, D.A.; Scheibling, R.E.; Van Alstyne, K.L. Spatial and temporal variation in DMSP content in the invasive seaweed Codium fragile ssp. fragile: Effects of temperature, light and grazing. Mar. Ecol. Prog. Ser. 2010, 417, 51–61. [Google Scholar] [CrossRef]
- Youngblood, W.W.; Blumer, I.M.; Guillard, R.L.; Fiore, F. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. 1971, 8, 190–201. [Google Scholar] [CrossRef]
- Youngblood, W.W.; Blumer, M. Alkanes and Alkenes in Marine Benthic Algae. Mar. Biol. 1973, 21, 163–172. [Google Scholar] [CrossRef]
- Han, J.; Chan, H.W.-S.; Calvin, M. Biosynthesis of Alkanes in Nostoc muscorum. J. Am. Chem. Soc. 1969, 91, 5156–5159. [Google Scholar] [CrossRef]
- Tanchotikul, U.; Hsieh, T.C.-Y. Volatile flavor components in crayfish waste. J. Food Sci. 1989, 54, 1515–1520. [Google Scholar] [CrossRef]
- Barofsky, A.; Pohnert, G. Biosynthesis of polyunsaturated short chain aldehydes in the diatom Thalassiosira rotula. Org. Lett. 2007, 9, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Boatright, J.; Negre, F.; Chen, X.; Kish, C.M.; Wood, B.; Peel, G.; Orlova, I.; Gang, D.; Rhodes, D.; Dudareva, N. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 2004, 135, 1993–2011. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Kurtzer, R.; Eisenreich, W.; Schwab, W. The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. J. Biol Chem. 2006, 281, 9845–9851. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, P.; Rouseff, R. Carotenoid-derived aroma compounds: An introduction. In Carotenoid-Derived Aroma Compounds; Winterhalter, P., Rouseff, R., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; pp. 1–17. ISBN 9780841237292. [Google Scholar]
- Erakin, S.; Güven, K.C. The volatile petroleum hydrocarbons in marine algae around Turkish Coasts. Acta Pharmaceut. Sciencia 2008, 50, 167–182. [Google Scholar]
- Namikoshi, M.; Fujiwara, T.; Nishikawa, T.; Ukai, K. Natural Abundance 14C Content of Dibutyl Phthalate (DBP) from Three Marine Algae. Mar. Drugs 2006, 4, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Hörtensteiner, S. Chlorophyll breakdown in higher plants and algae. Cell. Mol. Life Sci. 1999, 56, 330–347. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, A.; Ding, L.; Lei, X.; Sun, J.; Zhan, J. Chemical composition of the green alga Codium divaricatum Holmes. Fitoterapia 2010, 81, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Herald, C.L.; Ode, R.H.; Brown, P.; Gust, D.J.; Michael, C. The isolation of loliolide from an Indian Ocean Opisthobranch mollusc. J. Nat. Prod. 1980, 43, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Aliya, R.; Shameel, M. Phycochemical Examination of Three Species of Codium (Bryopsidophyceae). Bot. Mar. 1993, 36, 371–376. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rezankova, H.; Rezanka, T.; Hanus, L.O. Variability of the fatty acids of the marine green algae belonging to the genus Codium. Biochem. Syst. Ecol. 2003, 31, 1125–1145. [Google Scholar] [CrossRef]
- Yazici, Z.; Aysel, V.; Öksüz, E.; Köse, A.; Cumali, S.; Güven, K.C. Fatty acid composition of marine macroalgae from the Black Sea and Dardanelles. Toxicol. Environ. Chem. 2007, 89, 371–379. [Google Scholar] [CrossRef]
- Banaimoon, S.A. Fatty Acids in Marine Macroalgae from Southern Yemen (Hadramout) Including Occurrence of Eicosatetraenoic (20:4) and Eicosapentaenoic (20:5). Acids. Bot. Mar. 1992, 35, 165–168. [Google Scholar] [CrossRef]
- Mishra, V.K.; Temelli, F.; Ooraikul, B.; Shacklock, P.F.; Craigie, J.S. Lipids of the red algae Palmaria palmata. Bot. Mar. 1993, 36, 169–174. [Google Scholar] [CrossRef]
- Espinel-Ingrof, A.; Fothergill, A.; Ghannoum, M.; Manavathu, E.; Ostrosky-Zeichner, L.; Pfaller, M.; Rinaldi, M.; Schnell, W.; Walsh, T. Quality Control and Reference Guidelines for CLSI Broth Microdilution Susceptibility Method (M38-A Document) for Amphotericin B, Itraconazole, Posaconazole, and Voriconazole. J. Clin. Microbiol. 2005, 43, 543–5246. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Sandjo, L.; Yun, K.; Leutou, A.S.; Kim, G.-D.; Choi, H.D.; Kand, J.S.; Hong, J.; Son, B.W. Flavusides A and B, antibacterial cerebrosides form the Marine-Derived Fungus Aspergillus flavus. Chem. Pharm. Bull. 2011, 59, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, E.; Martin, D.; Uriz, M.J. Biological Activity of Extracts from Some Mediterranean Macrophytes. Bot. Mar. 1992, 35, 481–485. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Roje, M.; Kus, P.; Jokić, S.; Coz Rakovac, R. Phytochemical Study of the Headspace Volatile Organic Compounds of Fresh Algae and Seagrass from the Adriatic Sea (Single Point Collection). PLoS ONE 2018, 13, e0196462. [Google Scholar] [CrossRef]
- Jokić, S.; Horvat, G.; Aladić, K. Design of SFE system using a holistic approach -problems and challenges. In Supercritical Fluid Extraction: Technology, Applications and Limitations; Lindy, J., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2015; pp. 95–122. ISBN 978-1-63463-353-6. [Google Scholar]
- International Organization for Standardization. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters. Part 2: Preparation of Methyl Esters of Fatty Acids; EN ISO 12966-2:2017; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- International Organization for Standardization. Animal and Vegetable Fats and Oils. Gas Chromatography of Fatty Acid Methyl Esters. Part 4: Determination by Capillary Gas Chromatography; EN ISO 12966-4:2015; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved standard; NCCLS document M38-A; NCCLS: Wayne, PA, USA, 2002.
- Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxycumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem. 2013, 139, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Kovač, M.; Šubarić, D.; Bulaić, M.; Kovač, T.; Šarkanj, B. Yesterday masked, today modified; what do mycotoxins bring next? Arch. Ind. Hyg. Toxicol. 2018, 69, 196–214. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
No | Compound | RI | RIL | Area Percentages (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
I ± SD | II ± SD | III ± SD | IV ± SD | V ± SD | VI ± SD | VII ± SD | ||||
1. | 2-Thiapropane (DMS) S | <900 | 521 | 56.51 ± 2.45 a | 3.72 ± 0.10 b | 36.22 ± 1.58 c | 3.10 ± 0.10 b | - | - | - |
2. | Butanal S | <900 | 598 | - | - | - | - | - | - | - |
3. | Pentan-1-ol S | <900 | 768 | - | 1.02 ± 0.10 a | - | - | - | - | - |
4. | Hexanal S | <900 | 801 | 1.44 ± 0.15 a | 1.41 ± 0.11 a | 0.20 ± 0.01 b | 0.71 ± 0.02 b | - | - | - |
5. | Dimethyl-sulfoxide S | <900 | / | - | 1.52 ± 0.14 a | - | 2.63 ± 0.10 b | - | - | - |
6. | Ethylbenzene S | <900 | 858 | - | 2.23 ± 0.08 a | - | 0.42 ± 0.01 b | - | - | - |
7. | Hexan-1-ol S | <900 | 867 | 0.62 ± 0.01 a | - | - | - | - | - | - |
8. | Nonane S | 900 | 900 | - | - | - | - | - | 0.10 ± 0.01 a | - |
9. | α-Pinene S | 940 | 940 | 1.43 ± 0.09 a | - | - | 0.32 ± 0.01 b | 0.81 ± 0.02 a | - | - |
10. | Benzaldehyde S | 965 | 964 | 5.21 ± 0.15 a | 6.14 ± 0.11 b | 4.73 ± 0.09 a | 1.42 ± 0.02 c | 1.40 ± 0.01 c | 1.41 ± 0.03 c | - |
11. | Oct-1-en-3-one S | 981 | 980 | - | - | - | 0.10 ± 0.01 a | - | - | - |
12. | Oct-1-en-3-ol S | 982 | 982 | 1.12 ± 0.14 a | 2.61 ± 0.10 b | 9.71 ± 0.18 c | 0.81 ± 0.02 a | - | - | - |
13. | Octan-2,3-dione | 985 | 986 | - | 0.80 ± 0.03 a | - | 0.41 ± 0.01 a | - | - | - |
14. | 6-Methyl-hept-5-en-2-one S | 988 | 988 | - | 1.42 ± 0.08 a | - | 0.41 ± 0.02 b | - | - | - |
15. | 2-Pentylfuran S | 992 | 991 | - | 0.30 ± 0.01 a | - | - | - | 0.60 ± 0.02 a | - |
16. | Octanal S | 1003 | 1003 | 0.81 ± 0.02 a | 0.32 ± 0.01 a | 0.10 ± 0.01 a | 0.40 ± 0.01 a | - | - | - |
17. | δ-3-Carene S | 1013 | 1013 | - | 0.10 ± 0.01 a | - | 0.30 ± 0.01 a | - | - | - |
18. | p-Cymene S | 1031 | 1031 | 0.51 ± 0.02 a | - | - | 0.10 ± 0.01 a | - | - | - |
19. | 2-Ethyl-hexan-1-ol S | 1032 | 1031 | - | 0.40 ± 0.01 a | - | 0.72 ± 0.01 a | - | - | - |
20. | Limonene S | 1035 | 1035 | 2.20 ± 0.09 a | - | - | - | - | - | - |
21. | Benzyl alcohol S | 1037 | 1037 | 9.31 ± 0.30 a | 3.42 ± 0.09 b | 0.20 ± 0.01 c | 5.40 ± 0.03 b | 18.02 ± 1.04 d | 0.10 ± 0.01 c | - |
22. | (E)-Oct-2-enal S | 1061 | 1062 | - | 0.80 ± 0.01 a | - | 0.11 ± 0.01 a | - | - | - |
23. | Octan-1-ol S | 1074 | 1074 | 0.62 ± 0.03 a | 0.71 ± 0.04 a | 0.20 ± 0.01 a | 0.30 ± 0.01 a | - | - | - |
24. | Nonanal S | 1103 | 1102 | 3.51 ± 0.15 a | 1.00 ± 0.05 b | 2.51 ± 0.14 c | 1.40 ± 0.05 b | - | 0.62 ± 0.01 b | - |
25. | 4-Keto-isophorone S | 1147 | 1147 | - | 0.10 ± 0.01 a | - | 0.10 ± 0.01 a | - | - | - |
26. | 6-[(Z)-1-Butenyl]-cyclohepta-1,4-diene (Dictyo-pterene D) | 1158 | / | - | - | - | 0.41 ± 0.01 a | - | - | - |
27. | 6-Butyl-cyclohepta-1,4-diene (Dictyo-pterene C) | 1174 | / | - | - | - | 0.40 ± 0.01 a | - | - | - |
28. | Decanal S | 1206 | 1206 | 1.01 ± 0.03 a | 0.42 ± 0.01 a | 0.43 ± 0.01 a | 0.80 ± 0.02 a | - | - | - |
29. | 2-Phenoxy-ethanol S | 1215 | 1213 | - | - | - | - | - | - | 6.02 ± 0.16 a |
30. | β-Cyclocitral S | 1222 | 1223 | - | 0.50 ± 0.01 a | - | 0.42 ± 0.01 a | - | - | - |
31. | Farnesane S | 1376 | 1376 | - | 0.42 ± 0.02 a | - | 0.71 ± 0.03 a | - | - | - |
32. | Tetradecane S | 1400 | 1400 | - | - | - | 0.30 ± 0.01 a | - | 0.71 ± 0.01 a | - |
33. | Dodecanal S | 1409 | 1411 | - | 0.31 ± 0.01 a | - | 0.10 ± 0.01 a | - | - | - |
34. | (E)-α-Ionone S | 1428 | 1429 | - | 6.40 ± 0.30 a | - | 3.02 ± 0.19 b | - | 2.22 ± 0.08 b | - |
35. | Geranyl acetone S | 1454 | 1454 | - | 0.10 ± 0.01a | - | 0.31 ± 0.01a | - | - | - |
36. | β-Selinene S | 1462 | 1464 | - | 0.50 ± 0.02 a | - | - | - | - | - |
37. | Ledene S | 1472 | 1473 | - | 0.71 ± 0.01 a | - | - | - | - | - |
38. | Dodecan-1-ol S | 1477 | 1476 | - | 0.42 ± 0.01 a | - | - | - | - | - |
39. | ar-Curcumene S | 1483 | 1483 | - | 0.10 ± 0.01 a | - | 2.11 ± 0.08 b | - | - | - |
40. | (E)-β-Ionone S | 1486 | 1485 | - | 1.52 ± 0.09 a | - | 1.02 ± 0.05 a | - | 0.70 ± 0.03 a | - |
41. | Pentadecane S | 1500 | 1500 | - | 3.81 ± 0.09 a | 0.20 ± 0.01 b | 3.10 ± 0.11 a | - | 0.71 ± 0.03 b | - |
42. | Dihydro-actinolide * | 1528 | 1537 | - | 1.02 ± 0.01 a | - | - | - | - | - |
43. | Hexadecane S | 1600 | 1600 | - | 0.50 ± 0.01 a | - | 2.41 ± 0.12 b | - | - | - |
44. | Benzophenone S | 1627 | 1625 | - | 0.32 ± 0.01 a | - | 0.80 ± 0.05 a | - | - | - |
45. | (E)-Hepta-dec-8-ene | 1678 | 1676 | - | 1.40 ± 0.09 a | - | 2.41 ± 0.03 b | 0.22 ± 0.01 c | 0.71 ± 0.02 c | 0.82 ± 0.01 c |
46. | Heptadecane S | 1700 | 1700 | 4.82 ± 0.16 a | 41.50 ± 2.01 b | 32.51 ± 1.85 c | 52.62 ± 2.30 d | 23.44 ± 1.01 c | 9.41 ± 0.09 a | 7.20 ± 0.08 a |
47. | Loliolide | 1763 | - | - | - | - | - | - | 3.51 ± 0.08a | |
48. | Octadecane S | 1800 | 1800 | - | 0.10 ± 0.01 a | - | 1.60 ± 0.08 a | - | - | - |
49. | Neophyta-diene S | 1840 | 1838 | - | - | - | - | - | - | 3.20 ± 0.11 a |
50. | Hexahydro-farnesyl acetone (Phytone) S | 1845 | 1845 | - | - | - | - | 1.61 ± 0.09 a | 5.91 ± 0.11 b | - |
51. | Diisobutyl phthalate S | 1867 | 1868 | - | - | - | 0.40 ± 0.01 a | 2.22 ± 0.12 b | 0.82 ± 0.02 a | - |
52. | Nonadec-1-ene ** | 1872 | 1880 | - | 0.31 ± 0.01 a | - | 0.70 ± 0.02 a | - | 0.71 ± 0.03 a | 0.70 ± 0.02 a |
53. | Hexadecan-1-ol S | 1882 | 1882 | - | - | - | - | - | 1.21 ± 0.15 a | 3.10 ± 0.21 b |
54. | Nonadecane S | 1900 | 1900 | - | 0.10 ± 0.01 a | - | 0.81 ± 0.02 a | - | 0.31 ± 0.01 a | - |
55. | Dibutyl phthalate S | 1961 | 1960 | - | - | - | - | 9.80 ± 0.15 a | 1.03 ± 0.10 b | - |
56. | Hexadeca-noic acid S | 1963 | 1960 | - | - | - | - | - | - | 17.51 ± 1.13 a |
57. | Eicosane S | 2000 | 2000 | - | 0.40 ± 0.01 a | - | - | - | - | - |
58. | Cyclooctasulfur | 2009 | 2004 | - | - | - | - | 0.21 ± 0.01 a | 5.12 ± 0.09 a | - |
59. | (Z)-Octedec-9-en-1-ol S | 2060 | 2060 | - | - | - | - | - | - | 2.51 ± 0.12 a |
60. | Octadecan-1-ol S | 2084 | 2083 | 2.02 ± 0.12 a | ||||||
61. | Heneicosane S | 2100 | 2100 | - | 1.40 ± 0.10 a | - | - | - | - | - |
62. | (E)-Phytol S | 2110 | 2112 | - | - | - | - | 3.31 ± 0.09 a | 58.42 ± 2.50 b | 42.30 ± 2.01 c |
63. | (Z)-Octadec-9-enoic acid S | 2147 | 2146 | - | - | - | - | - | - | 3.02 ± 0.09 a |
64. | Docosane S | 2200 | 2200 | - | - | - | - | 13.90 ± 1.28 a | 0.42 ± 0.08 a | - |
65. | Diisooctyl phthalate S | 2274 | / | - | - | - | - | 13.30 ± 1.11 a | - | - |
No | Fatty Acids | % ± SD |
---|---|---|
1. | Caprylic acid (C8:0) | 0.055 ± 0.007 |
2. | Capric acid (C10:0) | 0.261 ± 0.006 |
3. | Lauric acid (C12:0) | 2.106 ± 0.000 |
4. | Tridecyclic acid (C13:0) | 0.373 ± 0.007 |
5. | Myristic acid (C14:0) | 2.891 ± 0.028 |
6. | Palmitic acid (C16:0) | 25.439 ± 0.050 |
7. | Palmitoleic acid (C16:1) | 3.514 ± 0.025 |
8. | Margaric acid (C17:0) | 0.372 ± 0.001 |
9. | Stearic acid (C18:0) | 9.042 ± 0.009 |
10. | trans-oleic acid + cis-oleic acid (C18:1n9t + C18:1n9c) | 36.53 ± 0.079 |
11. | Linoleic acid (C18:2n6c) | 11.619 ± 0.045 |
12. | γ-linolenic acid (C18:3n6) | 0.362 ± 0.001 |
13. | α-linolenic acid (C18:3n3) | 1.344 ± 0.005 |
14. | Arachidic acid (C20:0) | 0.408 ± 0.022 |
15. | Paullinic acid (C20:1) | 0.789 ± 0.051 |
16. | Arachidonic acid (C20:4n6) | 1.563 ± 0.052 |
17. | Eicosatrienoic acid (C20:3n3) | 1.065 ± 0.032 |
18. | Behenic acid (C22:0) | 1.365 ± 0.025 |
19. | Nervonic acid (C24:1) | 0.887 ± 0.002 |
Total saturated fatty acids (SFA) | 42.32 | |
Total mono-unsaturated fatty acids (MUFA) | 41.73 | |
Total poly-unsaturated fatty acids (PUFA) | 15.95 | |
Total ω3 fatty acids | 2.41 | |
Total ω6 fatty acids | 13.54 |
Microorganism | MIC50 | GIC50 | ||
---|---|---|---|---|
H2O Extract | DMSO Extract | H2O Extract | DMSO Extract | |
Alternaria alternata | 500 | 500 | - | - |
Aspergillus flavus | - | 5000 | 5 | 5, 50 |
Aspergillus ochraceus | 500 | - | - | 5000 |
Fusarium graminearum | 5000 | - | - | - |
Fusarium verticillioides | 500 | - | - | - |
Penicillium expansum | - | 50 | 5000, 500 | - |
Rhizophus spp. | - | 5000 | 5000 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerković, I.; Kranjac, M.; Marijanović, Z.; Šarkanj, B.; Cikoš, A.-M.; Aladić, K.; Pedisić, S.; Jokić, S. Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity. Molecules 2019, 24, 842. https://doi.org/10.3390/molecules24050842
Jerković I, Kranjac M, Marijanović Z, Šarkanj B, Cikoš A-M, Aladić K, Pedisić S, Jokić S. Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity. Molecules. 2019; 24(5):842. https://doi.org/10.3390/molecules24050842
Chicago/Turabian StyleJerković, Igor, Marina Kranjac, Zvonimir Marijanović, Bojan Šarkanj, Ana-Marija Cikoš, Krunoslav Aladić, Sandra Pedisić, and Stela Jokić. 2019. "Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity" Molecules 24, no. 5: 842. https://doi.org/10.3390/molecules24050842
APA StyleJerković, I., Kranjac, M., Marijanović, Z., Šarkanj, B., Cikoš, A. -M., Aladić, K., Pedisić, S., & Jokić, S. (2019). Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity. Molecules, 24(5), 842. https://doi.org/10.3390/molecules24050842