Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1H)-one
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Structure–Activity Relationship (SAR) Studies
2.2.1. Cytotoxicity Activities with SAR
2.2.2. Half Maximal Inhibitory Concentration (IC50) Study of Compounds 1d, 1h, 3d and 3g
2.2.3. Effects on Xenograft Model of Compounds 3d and 3g
2.3. Pharmacophore Requirements
3. Materials and Methods
3.1. General Information
3.2. Synthesis and the General Procedure for N1-alkylation
3.2.1. N1-Substituted Ethyl4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates 1a–1j
3.2.2. N1-Substituted Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 2a
3.2.3. N1-Substituted Ethyl 4-([1,1′-biphenyl]-4-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates 3a, 3c, 3d, 3e, 3g, 3h
3.2.4. N1-Substituted Ethyl 6-methyl-4-(4-morpholinophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 4a
3.2.5. N1-Substituted Ethyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 5a
3.2.6. N1-Substituted Ethyl 6-methyl-2-oxo-4-(pyridin-4-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate 6a
3.2.7. N1-Substituted 4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide 7c, 7d, 7e, 7f
3.2.8. N1-Substituted 4-(4-bromophenyl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-hydropyrimidine-5-carboxamides 8a, 8d, 8e
3.3. N1 and N3-Substituted Ethyl 4-(4-bromophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates
3.4. The Information on Reaction Condition Optimization
3.5. In Vitro Studies
3.5.1. Cell Culture
3.5.2. Preparation of Compounds Solutions
3.5.3. MTT Assay
3.6. In Vivo Studies on Xenograft Model
3.7. Log P Properties
3.8. Pharmacophore Requirements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fitzmaurice, C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Wild, C.P. Global cancer patterns: Causes and prevention. Lancet 2014, 383, 549–557. [Google Scholar] [CrossRef]
- De Fatima, A.; Braga, T.C.; Neto, L.D.S.; Terra, B.S.; Oliveira, B.G.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res. 2015, 6, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett. 2016, 57, 5135–5149. [Google Scholar] [CrossRef]
- Pagano, N.; Teriete, P.; Mattmann, M.E.; Yang, L.; Snyder, B.A.; Cai, Z.; Heli, M.L.; Cosford, N.D.P. An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors. Bioorg. Med. Chem. 2017, 25, 6248–6265. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhao, G.; Zhou, X.; Xu, X.; Xia, G.; Zheng, Z.; Wang, L.; Yang, X.; Song, L. 2,4-Diaryl-4,6,7,8-tetrahydroquinazolin-5(1H)-one derivatives as anti-HBV agents targeting at capsid assembly. Bioorg. Med. Chem. Lett. 2010, 20, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Matias, M.; Campos, G.; Santos, A.O.; Falcão, A.; Silvestre, S.; Alves, G. Potential antitumoral 3,4-dihydropyrimidin-2-(1H)-ones: Synthesis, in vitro biological evaluation and QSAR studies. RSC Adv. 2016, 6, 84943–84958. [Google Scholar] [CrossRef]
- Lauro, G.; Strocchia, M.; Terracciano, S.; Bruno, I.; Fischer, K.; Pergola, C.; Werz, O.; Riccio, R.; Bifulco, G. Exploration of the dihydropyrimidine scaffold for the development of new potential anti-inflammatory agents blocking prostaglandin E2 synthase-1 enzyme (mPGES-1). Eur. J. Med. Chem. 2014, 80, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Dhumaskar, K.L.; Meena, S.N.; Ghadi, S.C.; Tilve, S.G. Graphite catalyzed solvent free synthesis of dihydropyrimidin-2(1H)-ones/thiones and their antidiabetic activity. Bioorg. Med. Chem. Lett. 2014, 24, 2897–2899. [Google Scholar] [CrossRef] [PubMed]
- Akhaja, T.N.; Raval, J.P. 1,3-Dihydro-2H-indol-2-ones derivatives: Design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem. 2011, 46, 5573–5579. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.Y.; Ahmad, A.; Kumar, S.; Sobral, A.J.F.N. Flucytosine analogues obtained through Biginelli reaction as efficient combinative antifungal agents. Microb. Pathog. 2017, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.W.; Mabry, J.; Polisar, J.G.; Eagen, K.P.; Ganem, B.; Hess, G.P. Dihydropyrimidinone positive modulation of delta-subunit-containing gamma-aminobutyric acid type A receptors, including an epilepsy-linked mutant variant. Biochemistry 2010, 49, 4841–4851. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Diarylpyrazole Ligated Dihydropyrimidine Hybrids as Potent Non-Classical Antifolates and Their Efficacy Against Plasmodium falciparum. Arch. Pharm. 2017, 350, 1700088. [Google Scholar] [CrossRef] [PubMed]
- Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; et al. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem. 2016, 115, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Rodina, A.; Vilenchik, M.; Moulick, K.; Aguirre, J.; Kim, J.; Chiang, A.; Litz, J.; Clement, C.C.; Kang, Y.; She, Y.; et al. Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat. Chem. Biol. 2007, 3, 498. [Google Scholar] [CrossRef] [PubMed]
- Teleb, M.; Zhang, F.X.; Farghaly, A.M.; Wafa, O.M.A.; Fronczek, F.R.; Zamponi, G.W.; Fahmy, H. Synthesis of new N3-substituted dihydropyrimidine derivatives as L-/T-type calcium channel blockers. Eur. J. Med. Chem. 2017, 134, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Putatunda, S.; Chakraborty, S.; Ghosh, S.; Nandi, P.; Chakraborty, S.; Sen, P.C.; Chakraborty, A. Regioselective N1-alkylation of 3,4-dihydropyrimidine-2(1H)-ones: Screening of their biological activities against Ca2+-ATPase. Eur. J. Med. Chem. 2012, 54, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, N.; Kasana, V.K. 3,4-Dihydropyrimidin-2(1H)-one derivatives: Organocatalysed microwave assisted synthesis and evaluation of their antioxidant activity. Med. Chem. Res. 2012, 21, 4506–4511. [Google Scholar] [CrossRef]
- Kumar, B.R.P.; Sankar, G.; Baig, R.B.N.; Chandrashekaran, S. Novel Biginelli dihydropyrimidines with potential anticancer activity: A parallel synthesis and CoMSIA study. Eur. J. Med. Chem. 2009, 44, 4192–4198. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, A.; Oliveira, P.S.; Ritter, M.; Freitag, R.A.; Romano, R.L.; Quina, F.H.; Pizzuti, L.; Pereira, C.M.P.; Francieli, M.; Stefanello, F.M.; Alethéa, G.; Barschak, A.G. Antioxidant capacity and environmentally friendly synthesis of dihydropyrimidin-(2H)-ones promoted by naturally occurring organic acids. J. Biochem. Mol. Toxicol. 2012, 26, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Stefani, H.A.; Oliveira, C.B.; Almeida, R.B.; Pereira, C.M.P.; Braga, R.C.; Cella, R.; Borges, V.C.; Savegnago, L.; Nogueira, C.W. Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: A new class of potential antioxidant agents. Eur. J. Med. Chem. 2006, 41, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.A.R.; Canto, R.F.S.; Saba, S.; Rafique, J.; Braga, A.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg. Med. Chem. 2016, 24, 5762–5770. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, B.; Behbahani, F.K. Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol. Divers. 2018, 22, 405–446. [Google Scholar] [CrossRef] [PubMed]
- Dallinger, D.; Kappe, C.O. Selective N1-alkylation of 3,4-dihydropyrimidin-2(1H)-ones using Mitsunobu-type conditions. Synlett 2002, 2002, 1901–1903. [Google Scholar] [CrossRef]
- Singh, K.; Arora, D.; Poremsky, E.; Lowery, J.; Moreland, R.S. N1-Alkylated 3,4-dihydropyrimidine-2(1H)-ones: Convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity. Eur. J. Med. Chem. 2009, 44, 1997–2001. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.R.; Barchha, A.; Khedkar, V.M.; Pissurlenkar, R.R.S.; Sarkar, S.; Sarkar, D.; Joshi, R.R.; Joshi, R.A.; Shah, A.K.; Coutinho, E.C. Targeting dormant tuberculosis bacilli: Results for molecules with a novel pyrimidone scaffold. Chem. Biol. Drug Des. 2015, 85, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Yadlapalli, R.K.; Chourasia, O.P.; Vemuri, K.; Sritharan, M.; Perali, R.S. Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group. Bioorg. Med. Chem. Lett. 2012, 22, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, K.; Zhang, H.; Brekken, J.; Huser, N.; Powell, R.E.; Timple, N.; Busch, D.J.; Neely, L.; Sensintaffar, J.L.; Yang, Y.; et al. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol. Cancer 2009, 8, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Park, Y.M.; Kim, J.I.; Shim, E.H.; Kim, C.W.; Jang, J.J.; Kim, S.H.; Lee, W.H. T cell lymphoma in transgenic mice expressing the humanHsp70gene. Biochem. Biophys. Res. Commun. 1996, 218, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Sun, D.; Zhang, J.; Xie, X.; Wu, X.; Fang, W.; Tian, J.; Yan, C.; Wang, H.; Fu, F. Lx2-32c, a novel semi-synthetic taxane, exerts antitumor activity against prostate cancer cells in vitro and in vivo. Acta Pharm. Sin. B 2017, 7, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guan, D.; Lei, L.; Lu, J.; Liu, J.Q.; Yang, G.; Yan, C.; Zhai, R.; Tian, J.; Bi, Y.; Fu, F.; Wang, H. H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol. Appl. Pharm. 2018, 341, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.T.; Yang, Y.; Cai, P.; Sun, D.Y.; Sánchez-Murcia, P.A.; Zhang, X.Y.; Jia, W.Q.; Lei, L.; Guo, M.Q.; Gago, F.; et al. A series of enthalpically optimized docetaxel analogues exhibiting enhanced antitumor activity and water solubility. J. Nat. Prod. 2018, 81, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, Q.; Wang, N.; Yang, Y.; Liu, J.; Yu, G.; Yang, X.; Xu, H.; Wang, H. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int. J. Nanomed. 2018, 13, 4549. [Google Scholar] [CrossRef] [PubMed]
- Khalilpour, A.; Asghari, S. Synthesis, characterization and evaluation of cytotoxic and antioxidant activities of dihydropyrimidone substituted pyrrole derivatives. Med. Chem. Res. 2018, 27, 15–22. [Google Scholar] [CrossRef]
- Prokopcová, H.; Dallinger, D.; Uray, G.; Kaan, H.Y.K.; Ulaganathan, V.; Kozielski, F.; Laggner, C.; Kappe, C.O. Structure-Activity Relationships and Molecular Docking of Novel Dihydropyrimidine-Based Mitotic Eg5 Inhibitors. Chem. Med. Chem. 2010, 5, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
DHPMs (1a–8e) | R1 | R2 | R3 | N1-Alkylation Yield (%) a | Log P (Partition Coefficient) |
---|---|---|---|---|---|
1a | Br | OEt | 8.0 | 3.33 | |
1b | Br | OEt | 52.2 | 3.65 | |
1c | Br | OEt | 35.1 | 5.27 | |
1d | Br | OEt | 32.3 | 5.45 | |
1e | Br | OEt | 43.6 | 4.59 | |
1f | Br | OEt | 20.0 | 3.91 | |
1g | Br | OEt | 69.7 | 4.44 | |
1h | Br | OEt | 55.8 | 5.50 | |
1i | Br | OEt | 27.2 | 2.71 | |
1j | Br | OEt | 9.4 | 4.41 | |
2a | OCH3 | OEt | 21.7 | 2.47 | |
3a | Ph | OEt | 33.5 | 4.32 | |
3c | Ph | OEt | 25.8 | 6.26 | |
3d | Ph | OEt | 13.3 | 6.43 | |
3e | Ph | OEt | 24.8 | 5.58 | |
3g | Ph | OEt | 19.9 | 5.43 | |
3h | Ph | OEt | 50.5 | 6.49 | |
4a | OEt | 20.3 | 1.70 | ||
5a | NO2 | OEt | 17.8 | 2.29 | |
6a | OEt | 21.7 | 1.07 | ||
7c | Br | NH2 | 14.6 | 3.92 | |
7d | Br | NH2 | 58.2 | 4.09 | |
7e | Br | NH2 | 73.8 | 3.24 | |
7f | Br | NH2 | 21.7 | 2.55 | |
8a | Br | 25.2 | 4.36 | ||
8d | Br | 16.7 | 6.47 | ||
8e | Br | 28.7 | 5.62 |
DHPMs (1a–8e) | Survival Rate of Four Different Cells (%) | |||
---|---|---|---|---|
U87 a | U251 a | Hela a | A549 a | |
1a | 87.34 ± 1.24 | 67.14 ± 4.61 | 69.81 ± 2.04 | 76.80 ± 1.76 |
1b | 84.93 ± 0.72 | 78.25 ± 7.88 | 71.44 ± 0.67 | 59.48 ± 2.63 |
1c | 97.83 ± 4.32 | 85.20 ± 1.16 | 71.96 ± 0.96 | 62.86 ± 0.97 |
1d | 50.83 ± 0.25 | 51.07 ± 2.56 | 53.71 ± 1.08 | 73.26 ± 2.69 |
1e | 89.41 ± 1.47 | 71.65 ± 4.64 | 51.05 ± 1.51 | 54.10 ± 1.44 |
1f | 95.09 ± 12.76 | 74.75 ± 0.79 | 62.48 ± 1.41 | 61.86 ± 1.24 |
1g | 84.04 ± 3.08 | 72.74 ± 9.08 | 51.05 ± 1.42 | 50.68 ± 1.22 |
1h | 60.05 ± 1.55 | 56.40 ± 4.21 | 51.05 ± 0.63 | 59.28 ± 2.97 |
1i | 94.46 ± 5.33 | 80.10 ± 7.98 | 62.48 ± 1.55 | 69.93 ± 0.34 |
1j | 60.69 ± 1.89 | 63.27 ± 3.40 | 65.72 ± 0.39 | 66.60 ± 1.35 |
2a | 85.54 ± 3.15 | 72.22 ± 9.37 | 67.90 ± 1.62 | 78.92 ± 1.62 |
3a | 65.62 ± 3.77 | 48.23 ± 3.97 | 59.56 ± 3.87 | 58.92 ± 2.41 |
3c | 100.69 ± 2.75 | 85.60 ± 4.04 | 73.81 ± 5.73 | 51.92 ± 3.35 |
3d | 51.98 ± 1.64 | 49.49 ± 4.73 | 63.57 ± 2.74 | 64.94 ± 4.16 |
3e | 70.94 ± 5.16 | 71.28 ± 3.76 | 57.38 ± 0.40 | 58.35 ± 4.25 |
3g | 54.27 ± 0.88 | 51.07 ± 4.32 | 44.85 ± 1.08 | 43.70 ± 2.38 |
3h | 60.37 ± 2.71 | 51.21 ± 0.58 | 46.02 ± 0.85 | 55.16 ± 2.43 |
4a | 71.26 ± 2.08 | 77.28 ± 5.38 | 62.32 ± 2.26 | 81.36 ± 1.63 |
5a | 75.53 ± 4.89 | 76.22 ± 5.48 | 47.96 ± 5.00 | 52.22 ± 0.19 |
6a | 81.20 ± 4.44 | 82.03 ± 6.38 | 68.80 ± 5.39 | 68.04 ± 3.02 |
7c | 81.02 ± 2.98 | 97.29 ± 3.47 | 74.26 ± 7.29 | 91.51 ± 1.21 |
7d | 78.91 ± 4.81 | 84.79 ± 5.14 | 65.73 ± 3.44 | 74.22 ± 1.96 |
7e | 76.22 ± 3.21 | 83.07 ± 2.22 | 66.91 ± 2.78 | 68.17 ± 7.73 |
7f | 77.11 ± 6.22 | 81.09 ± 4.01 | 78.32 ± 2.47 | 71.78 ± 4.25 |
8a | 81.22 ± 4.56 | 89.27 ± 3.64 | 66.91 ± 4.92 | 72.03 ± 5.56 |
8d | 68.21 ± 2.16 | 71.53 ± 5.85 | 78.32 ± 2.28 | 71.29 ± 3.84 |
8e | 81.86 ± 0.71 | 73.90 ± 2.22 | 79.80 ± 3.79 | 85.65 ± 2.39 |
Compound | IC50 (µM) | |
---|---|---|
U87 | U251 | |
1d | 9.72 ± 0.29 | 13.91 ± 0.86 |
1h | 9.30 ± 0.81 | 14.01 ± 0.76 |
3d | 12.02 ± 0.5 | 6.36 ± 0.73 |
3g | 9.52 ± 0.81 | 7.32 ± 0.86 |
BIIB021 a | 2.07 ± 0.13 | 0.3 ± 0.043 |
Groups | Dosage (mg/kg) | Number Initial/End | Body Weight (g) | Tumor Weight (g) | IR (%) | |
---|---|---|---|---|---|---|
Initial | End | |||||
Control | 0 | 8/8 | 20.2 ± 0.4 | 22.0 ± 1.2 | 0.83 ± 0.24 | |
3d | 100 | 8/8 | 19.6 ± 0.6 | 21.5 ± 1.5 | 0.37 ± 0.19 | 54.9 |
3g | 100 | 8/8 | 19.8 ± 0.5 | 21.8 ± 0.8 | 0.54 ± 0.25 | 34.3 |
BIIB021 | 30 | 8/8 | 20.1 ± 0.7 | 21.3 ± 1.0 | 0.33 ± 0.17 | 59.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, J.; Zhang, R.; Guo, Y.; Wang, H.; Meng, Q.; Sun, Y.; Liu, Z. Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1H)-one. Molecules 2019, 24, 891. https://doi.org/10.3390/molecules24050891
Liu Y, Liu J, Zhang R, Guo Y, Wang H, Meng Q, Sun Y, Liu Z. Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1H)-one. Molecules. 2019; 24(5):891. https://doi.org/10.3390/molecules24050891
Chicago/Turabian StyleLiu, Ye, Jiaqi Liu, Renmei Zhang, Yan Guo, Hongbo Wang, Qingguo Meng, Yuan Sun, and Zongliang Liu. 2019. "Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1H)-one" Molecules 24, no. 5: 891. https://doi.org/10.3390/molecules24050891
APA StyleLiu, Y., Liu, J., Zhang, R., Guo, Y., Wang, H., Meng, Q., Sun, Y., & Liu, Z. (2019). Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1H)-one. Molecules, 24(5), 891. https://doi.org/10.3390/molecules24050891