Inhibitory Effects of (−)-Epigallocatechin-3-gallate on Esophageal Cancer
Abstract
:1. Introduction
2. Literature Search Strategy
3. Epidemiological Evidence
4. Animal and Cell Studies
4.1. Anti-Proliferation and Inducing Esophageal Cancer Cell Apoptosis
4.2. Anti-Metastasis
4.3. Inhibiting Tumor Angiogenesis
4.4. Inhibiting DNA Methylation
4.5. Regulating Cell Signaling Pathway and Interacting with Target Proteins
4.6. Antioxidant and Pro-Oxidation
4.7. Animal Model Tests
4.8. Pharmaceutical Synergistic Effect
5. Clinical Trials
6. Discussion
6.1. Inconsistent Results
6.2. Further Study Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.Y.; Fang, J.Y. Early esophageal cancer screening in China. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet 2013, 381, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Enzinger, P.C.; Mayer, R.J. Esophageal cancer. N. Engl. J. Med. 2003, 349, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef]
- Liang, Y.R.; Ye, Q.; Jin, J.; Liang, H.; Lu, J.L.; Du, Y.Y.; Dong, J.J. Chemical and instrumental assessment of green tea sensory preference. Int. J. Food Prop. 2008, 11, 258–272. [Google Scholar] [CrossRef]
- Dong, J.J.; Ye, J.H.; Lu, J.L.; Zheng, X.Q.; Liang, Y.R. Isolation of antioxidant catechins from green tea and its decaffeination. Food Bioprod. Process. 2011, 89, 62–66. [Google Scholar] [CrossRef]
- Oliviero, F.; Scanu, A.; Zamudio-Cuevas, Y.; Punzi, L.; Spinella, P. Anti-inflammatory effects of polyphenols in arthritis. J. Sci. Food Agric. 2018, 98, 1653–1659. [Google Scholar] [CrossRef]
- Furushima, D.; Ide, K.; Yamada, H. Effect of Tea Catechins on Influenza Infection and the Common Cold with a Focus on Epidemiological/Clinical Studies. Molecules 2018, 23, 1795. [Google Scholar] [CrossRef]
- Polito, C.; Cai, Z.Y.; Shi, Y.L.; Li, X.M.; Yang, R.; Shi, M.; Li, Q.S.; Ma, S.C.; Xiang, L.P.; Wang, K.R.; et al. Association of Tea Consumption with Risk of Alzheimer’s Disease and Anti-Beta-Amyloid Effects of Tea. Nutrients 2018, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Eng, Q.Y.; Thanikachalam, P.V.; Ramamurthy, S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol. 2018, 210, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr. 2018, 58, 924–941. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.P.; Wang, A.; Ye, J.H.; Zheng, X.Q.; Polito, C.A.; Lu, J.L.; Li, Q.S.; Liang, Y.R. Suppressive Effects of Tea Catechins on Breast Cancer. Nutrients 2016, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Lu, J.L.; Liang, Y.R.; Li, Q.S. Suppressive Effects of EGCG on Cervical Cancer. Molecules 2018, 23, 2334. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Matsuo, T.; Araki, K.; Nakamura, Y.; Sagara, Y.; Ohba, K.; Sakai, H. Anticancer effects of green tea and the underlying molecular mechanisms in bladder cancer. Medicines 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Zhang, G.H.; Guan, B.X.; Xu, X.C. Suppression of esophageal cancer cell growth using curcumin, (−)-epigallocatechin-3-gallate and lovastatin. World J. Gastroenterol. 2012, 18, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Sang, S.; You, H.; Lee, M.J.; Hong, J.; Chin, K.V.; Yang, C.S. Mechanism of action of (−)-epigallocatechin-3-gallate: Auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res. 2005, 65, 8049–8056. [Google Scholar] [CrossRef]
- Yuan, J.M. Green tea and prevention of esophageal and lung cancers. Mol. Nutr. Food Res. 2011, 55, 886–904. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Huang, S.; Su, Y. Dietary Flavonols Intake and Risk of Esophageal and Gastric Cancer: A Meta-Analysis of Epidemiological Studies. Nutrients 2016, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hou, L.; Gu, S.; Zuo, X.; Meng, D.; Luo, M.; Zhang, X.; Huang, S.; Zhao, X. Molecular mechanism of epigallocatechin-3-gallate in human esophageal squamous cell carcinoma in vitro and in vivo. Oncol. Rep. 2015, 33, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, W.; Jia, L.; Li, B.; Chen, Y.C.; Tu, Y. Enhancement of (−)-epigallocatechin-3-gallate and theaflavin-3-3’-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem. Biophys. Res. Commun. 2013, 438, 370–374. [Google Scholar] [CrossRef] [PubMed]
- The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 February 2019).
- Gao, Y.T.; McLaughlin, J.K.; Blot, W.J.; Ji, B.T.; Dai, Q.; Fraumeni, J.F., Jr. Reduced risk of esophageal cancer associated with green tea consumption. J. Natl. Cancer Inst. 1994, 86, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.K.; Lee, C.H.; Wu, I.C.; Liu, J.S.; Wu, D.C.; Lee, J.M.; Goan, Y.G.; Chou, S.H.; Huang, C.T.; Lee, C.Y.; et al. Food intake and the occurrence of squamous cell carcinoma in different sections of the esophagus in Taiwanese men. Nutrition 2009, 25, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tang, L.; Sun, G.; Tang, Y.; Xie, Y.; Wang, S.; Hu, X.; Gao, W.; Cox, S.B.; Wang, J.S. Etiological study of esophageal squamous cell carcinoma in an endemic region: A population-based case control study in Huaian, China. BMC Cancer 2006, 6, 287. [Google Scholar] [CrossRef] [PubMed]
- Nechuta, S.; Shu, X.O.; Li, H.L.; Yang, G.; Ji, B.T.; Xiang, Y.B.; Cai, H.; Chow, W.H.; Gao, Y.T.; Zheng, W. Prospective cohort study of tea consumption and risk of digestive system cancers: Results from the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2012, 96, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.S.; Freedman, N.D.; Kamangar, F.; Dawsey, S.M.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Tea, coffee, carbonated soft drinks and upper gastrointestinal tract cancer risk in a large United States prospective cohort study. Eur. J. Cancer 2010, 46, 1873–1881. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.S.; Yang, J.; Fu, Y.Q.; Huang, T.; Huang, Y.J.; Li, D. Effects of green tea, black tea, and coffee consumption on the risk of esophageal cancer: A systematic review and meta-analysis of observational studies. Nutr. Cancer 2013, 65, 1–16. [Google Scholar] [CrossRef]
- Sang, L.X.; Chang, B.; Li, X.H.; Jiang, M. Green tea consumption and risk of esophageal cancer: A meta-analysis of published epidemiological studies. Nutr. Cancer 2013, 65, 802–812. [Google Scholar] [CrossRef]
- Zheng, P.; Zheng, H.M.; Deng, X.M.; Zhang, Y.D. Green tea consumption and risk of esophageal cancer: A meta-analysis of epidemiologic studies. BMC Gastroenterol. 2012, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Q.; Xia, H.; Lin, J. Green tea drinking habits and esophageal cancer in southern China: A case-control study. Asian Pac. J. Cancer Prev. 2011, 12, 229–233. [Google Scholar] [PubMed]
- Das, K.C.; Singh, S.; Pawar, G.; Masih, R.; Raju, N. Risk factors analysis of squamous cell carcinoma (scc) esophagus in North Indian females in tertiary care hospital: A case–control Study. Int. J. Recent Sci. Res. 2015, 6, 4661–4664. [Google Scholar]
- Wani, I.; Parray, F.Q.; Wani, R.A.; Naqash, S.H.; Wani, K.A.; Malik, A.A.; Choudri, N.A.; Wani, M.A.; Khan, N.A.; Sheikh, T.A. Noon Chai and gastric cancer. Int. J. Case Rep. Imag. 2013, 4, 138–142. [Google Scholar] [CrossRef]
- Wu, M.; Van’t Veer, P.; Zhang, Z.F.; Wang, X.S.; Gu, X.P.; Han, R.Q.; Yang, J.; Zhang, X.F.; Liu, A.M.; Kok, F.J.; et al. A large proportion of esophageal cancer cases and the incidence difference between regions are attributable to lifestyle risk factors in China. Cancer Lett. 2011, 308, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, A.M.; Kampman, E.; Zhang, Z.F.; Van’t Veer, P.; Wu, D.L.; Wang, P.H.; Yang, J.; Qin, Y.; Mu, L.N.; et al. Green tea drinking, high tea temperature and esophageal cancer in high- and low-risk areas of Jiangsu Province, China: A population-based case-control study. Int. J. Cancer 2009, 124, 1907–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.M.; Sun, C.; Butler, L.M. Tea and cancer prevention: Epidemiological studies. Pharmacol. Res. 2011, 64, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oze, I.; Matsuo, K.; Kawakita, D.; Hosono, S.; Ito, H.; Watanabe, M.; Hatooka, S.; Hasegawa, Y.; Shinoda, M.; Tajima, K.; et al. Coffee and green tea consumption is associated with upper aerodigestive tract cancer in Japan. Int. J. Cancer 2014, 135, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Lujan-Barroso, L.; Bueno-de-Mesquita, H.B.; Dik, V.K.; Boeing, H.; Steffen, A.; Tjonneland, A.; Olsen, A.; Bech, B.H.; Overvad, K.; et al. Tea and coffee consumption and risk of esophageal cancer: The European prospective investigation into cancer and nutrition study. Int. J. Cancer 2014, 135, 1470–1479. [Google Scholar] [CrossRef] [Green Version]
- Tai, W.P.; Nie, G.J.; Chen, M.J.; Yaz, T.Y.; Guli, A.; Wuxur, A.; Huang, Q.Q.; Lin, Z.G.; Wu, J. Hot food and beverage consumption and the risk of esophageal squamous cell carcinoma: A case-control study in a northwest area in China. Medicine 2017, 96, e9325. [Google Scholar] [CrossRef]
- Yang, X.; Ni, Y.; Yuan, Z.; Chen, H.; Plymoth, A.; Jin, L.; Chen, X.; Lu, M.; Ye, W. Very hot tea drinking increases esophageal squamous cell carcinoma risk in a high-risk area of China: A population-based case-control study. Clin. Epidemiol. 2018, 10, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Tang, H.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Tang, A.; Zhou, X.; Yang, X.; Chen, J.; et al. hot tea consumption and its interactions with alcohol and tobacco use on the risk for esophageal cancer: A population-based cohort study. Ann. Intern. Med. 2018, 168, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Tong, Q.; Liu, X.; Yu, Z.; Zhang, J.; Gao, B. Epigallocatechin-3-gallate inhibits growth and induces apoptosis in esophageal cancer cells through the demethylation and reactivation of the p16 gene. Oncol. Lett. 2017, 14, 1152–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zuo, J.; Wang, G. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis in Ec9706 and Eca109 esophageal carcinoma cells. Oncol. Lett. 2017, 14, 4391–4395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Ju, Y.; Wang, J.; Zhou, R. Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathol. Res. Pract. 2017, 213, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Shimada, Y.; Sato, F.; Maeda, M.; Itami, A.; Kaganoi, J.; Komoto, I.; Kawabe, A.; Imamura, M. Inhibitory effects of epigallocatechin-3-gallate on N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in F344 rats. Int. J. Oncol. 2002, 21, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Krishnan, K.; Liu, K.; Bresalier, R.S. Polyphenon E inhibits the growth of human Barrett’s and aerodigestive adenocarcinoma cells by suppressing cyclin D1 expression. Clin. Cancer Res. 2009, 15, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. The effects of Chinese tea on the occurrence of esophageal tumors induced by N-nitrosomethylbenzylamine in rats. Prev. Med. 1992, 21, 385–391. [Google Scholar] [CrossRef]
- Fang, M.Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C.S. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003, 63, 7563–7570. [Google Scholar] [PubMed]
- Morse, M.A.; Kresty, L.A.; Steele, V.E.; Kelloff, G.J.; Boone, C.W.; Balentine, D.A.; Harbowy, M.E.; Stoner, G.D. Effects of theaflavins on N-nitrosomethylbenzylamine-induced esophageal tumorigenesis. Nutr. Cancer 1997, 29, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Wang, L.D.; Lee, M.J.; Ho, C.T.; Huang, M.T.; Conney, A.H.; Yang, C.S. Inhibition of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in rats by green and black tea. Carcinogenesis 1995, 16, 2143–2148. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Guo, X.; Wang, H.; Zhou, T.; Wang, X. Differences in the effects of EGCG on chromosomal stability and cell growth between normal and colon cancer cells. Molecules 2018, 23, 788. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Chiang, W.C.; Wong, Y.K.; Lin, S.C.; Chang, K.W.; Liu, C.J. Increase of MMP-13 expression in multi-stage oral carcinogenesis and epigallocatechin-3-gallate suppress MMP-13 expression. Oral Dis. 2006, 12, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Deguchi, A.; Lim, J.T.; Moriwaki, H.; Kopelovich, L.; Weinstein, I.B. (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin. Cancer Res. 2005, 11, 2735–2746. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention. AAPS J. 2014, 16, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Klutstein, M.; Nejman, D.; Greenfield, R.; Cedar, H. DNA methylation in cancer and aging. Cancer Res. 2016, 76, 3446–3450. [Google Scholar] [CrossRef]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef]
- Esteller, M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 2002, 21, 5427–5440. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Gonzales, F.A.; Jones, P.A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001, 29, 4598–4606. [Google Scholar] [CrossRef]
- Rice, J.C.; Massey-Brown, K.S.; Futscher, B.W. Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. Oncogene 1998, 17, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Matsen, C.B.; Gonzales, F.A.; Ye, W.; Greer, S.; Marquez, V.E.; Jones, P.A.; Selker, E.U. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer Inst. 2003, 95, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Christman, J.K. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 2002, 21, 5483–5495. [Google Scholar] [CrossRef] [PubMed]
- Bender, C.M.; Pao, M.M.; Jones, P.A. Inhibition of DNA methylation by 5-aza-2’-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 1998, 58, 95–101. [Google Scholar] [PubMed]
- Ahmad, N.; Cheng, P.; Mukhtar, H. Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem. Biophys. Res. Commun. 2000, 275, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Hussain, T.; Mukhtar, H. Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch. Biochem. Biophys. 2003, 410, 177–185. [Google Scholar] [CrossRef]
- Chung, J.Y.; Park, J.O.; Phyu, H.; Dong, Z.; Yang, C.S. Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (−)-epigallocatechin-3-gallate and theaflavin-3,3’-digallate. FASEB J. 2001, 15, 2022–2024. [Google Scholar] [CrossRef] [PubMed]
- Bode, A.M.; Dong, Z. Signal transduction pathways: Targets for chemoprevention of skin cancer. Lancet Oncol. 2000, 1, 181–188. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, Q.; Xiong, D.; Vedell, P.; Yan, Y.; Jiang, H.; Cui, P.; Ding, F.; Tichelaar, J.W.; Wang, Y.; et al. Transcriptomic analysis by RNA-seq revealspathway as key regulator that green tea may rely on to inhibit lung tumorigenesis. Mol. Carcinog. 2014, 53, 19–29. [Google Scholar] [CrossRef]
- Chung, J.Y.; Huang, C.; Meng, X.; Dong, Z.; Yang, C.S. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: Structure-activity relationship and mechanisms involved. Cancer Res. 1999, 59, 4610–4617. [Google Scholar]
- Dong, Z.; Ma, W.; Huang, C.; Yang, C.S. Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (−)-epigallocatechin gallate, and theaflavins. Cancer Res. 1997, 57, 4414–4419. [Google Scholar] [PubMed]
- Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018, 10, 1936. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.F.; Nebreda, A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 2009, 9, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Shimada, Y.; Sato, F.; Maeda, M.; Itami, A.; Kaganoi, J.; Komoto, I.; Kawabe, A.; Imamura, M. Promotion effects of hot water on N-nitrosomethylbenzylamine-induced esophageal tumorigenesis in F344 rats. Oncol. Rep. 2003, 10, 421–426. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Qi, Y.; Huang, D.; Gu, X.; Tian, Y.; Li, P.; Li, H.; Zhang, Y. EGCG inhibits Cd(2+)-induced apoptosis through scavenging ROS rather than chelating Cd(2+) in HL-7702 cells. Toxicol. Mech. Methods 2014, 24, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, J.; Taskeen, M.; Mohammad, I.; Huo, C.; Chan, T.H.; Dou, Q.P. Recent advances on tea polyphenols. Front. Biosci. 2012, 4, 111–131. [Google Scholar] [CrossRef]
- Frei, B.; Higdon, J.V. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 2003, 133, 3275s–3284s. [Google Scholar] [CrossRef] [PubMed]
- Sriram, N.; Kalayarasan, S.; Sudhandiran, G. Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling. Pulm. Pharmacol. Ther. 2009, 22, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J.; Kundu, J.K.; Na, H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008, 74, 1526–1539. [Google Scholar] [CrossRef]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef]
- Li, H.; Jiang, N.; Liu, Q.; Gao, A.; Zhou, X.; Liang, B.; Li, R.; Li, Z.; Zhu, H. Topical treatment of green tea polyphenols emulsified in carboxymethyl cellulose protects against acute ultraviolet light B-induced photodamage in hairless mice. Photochem. Photobiol. Sci. 2016, 15, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Das, S. Elimination of deleterious effects of free radicals in murine skin carcinogenesis by black tea infusion, theaflavins and epigallocatechin gallate. Asian Pac. J. Cancer Prev. 2002, 3, 225–230. [Google Scholar] [PubMed]
- Sun, C.L.; Yuan, J.M.; Lee, M.J.; Yang, C.S.; Gao, Y.T.; Ross, R.K.; Yu, M.C. Urinary tea polyphenols in relation to gastric and esophageal cancers: A prospective study of men in Shanghai, China. Carcinogenesis 2002, 23, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Li, G.X.; Chen, Y.K.; Hou, Z.; Xiao, H.; Jin, H.; Lu, G.; Lee, M.J.; Liu, B.; Guan, F.; Yang, Z.; et al. Pro-oxidative activities and dose-response relationship of (−)-epigallocatechin-3-gallate in the inhibition of lung cancer cell growth: A comparative study in vivo and in vitro. Carcinogenesis 2010, 31, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Spechler, S.J.; Sharma, P.; Souza, R.F.; Inadomi, J.M.; Shaheen, N.J. American gastroenterological association medical position statement on the management of barrett’s esophagus. Gastroenterology 2011, 140, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Joe, A.K.; Schnoll-Sussman, F.; Bresalier, R.S.; Abrams, J.A.; Hibshoosh, H.; Cheung, K.; Friedman, R.A.; Yang, C.S.; Milne, G.L.; Liu, D.D.; et al. Phase Ib Randomized, Double-blinded, placebo-controlled, dose escalation study of polyphenon e in patients with barrett’s esophagus. Cancer Prev. Res. 2015, 8, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xie, P.; Li, X.; Zhu, W.; Sun, X.; Sun, X.; Chen, X.; Xing, L.; Yu, J. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother. Oncol. 2015, 114, 351–356. [Google Scholar] [CrossRef]
- Andrici, J.; Eslick, G.D. Hot Food and Beverage Consumption and the Risk of Esophageal Cancer: A Meta-Analysis. Am. J. Prev. Med. 2015, 49, 952–960. [Google Scholar] [CrossRef]
- Okaru, A.O.; Rullmann, A.; Farah, A.; Gonzalez de Mejia, E.; Stern, M.C.; Lachenmeier, D.W. Comparative oesophageal cancer risk assessment of hot beverage consumption (coffee, mate and tea): The margin of exposure of PAH vs. very hot temperatures. BMC Cancer 2018, 18, 236. [Google Scholar] [CrossRef]
- Rasool, S.; Ganai, B.A.; Kadla, S.A.; Ahanger, A.G.; Qazi, F.; Khan, T.; Rasool, V.; Masood, A. The ECRG1 290Arg/Gln polymorphism is related to risk of esophageal squamous cell carcinoma in Kashmir. Asian Pac. J. Cancer Prev. 2011, 12, 265–269. [Google Scholar]
- Meng, X.; Sang, S.; Zhu, N.; Lu, H.; Sheng, S.; Lee, M.J.; Ho, C.T.; Yang, C.S. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem. Res. Toxicol. 2002, 15, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.Y.; Li, X.M.; Liang, J.P.; Xiang, L.P.; Wang, K.R.; Shi, Y.L.; Yang, R.; Shi, M.; Ye, J.H.; Lu, J.L.; et al. Bioavailability of Tea Catechins and Its Improvement. Molecules 2018, 23, 2346. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.C.; Xiao, H.; Zhu, Z.; Li, Q.; Bai, Q.; Wakefield, M.R.; Mann, J.D.; Fang, Y. A Potential role for green tea as a radiation sensitizer for prostate cancer. Pathol. Oncol. Res. 2017, 25, 263–268. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, K.; Liu, Q.; Yang, C.; et al. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr. Mol. Med. 2012, 12, 163–176. [Google Scholar] [CrossRef]
- Lambert, J.D.; Sang, S.; Hong, J.; Kwon, S.J.; Lee, M.J.; Ho, C.T.; Yang, C.S. Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metab. Dispos. 2006, 34, 2111–2116. [Google Scholar] [CrossRef]
- Chiou, Y.S.; Ma, N.J.; Sang, S.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. J. Agric. Food Chem. 2012, 60, 3441–3451. [Google Scholar] [CrossRef]
- Hardefeldt, H.A.; Cox, M.R.; Eslick, G.D. Association between human papillomavirus (HPV) and oesophageal squamous cell carcinoma: A meta-analysis. Epidemiol. Infect. 2014, 142, 1119–1137. [Google Scholar] [CrossRef]
- Yamada, S.; Tsukamoto, S.; Huang, Y.; Makio, A.; Kumazoe, M.; Yamashita, S.; Tachibana, H. Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci. Rep. 2016, 6, 19225. [Google Scholar] [CrossRef] [Green Version]
- Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget 2016, 7, 16158–16171. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Manthey, J.; Lioutikova, E.; Yang, W.; Yoshigoe, K.; Yang, M.Q.; Wang, H. The up-regulation of Myb may help mediate EGCG inhibition effect on mouse lung adenocarcinoma. Hum. Genom. 2016, 10 (Suppl. S2), 19. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Wang, C.; Clifford, R.J.; Yang, H.H.; Su, H.; Wang, L.; Wang, Y.; Xu, Y.; Tang, Z.Z.; Ding, T.; et al. Integrative genomics analysis of genes with biallelic loss and its relation to the expression of mRNA and micro-RNA in esophageal squamous cell carcinoma. BMC Genom. 2015, 16, 732. [Google Scholar] [CrossRef]
- Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol. Cells 2018, 41, 73–82. [Google Scholar] [PubMed]
- Nishimura, N.; Hartomo, T.B.; Pham, T.V.; Lee, M.J.; Yamamoto, T.; Morikawa, S.; Hasegawa, D.; Takeda, H.; Kawasaki, K.; Kosaka, Y.; et al. Epigallocatechin gallate inhibits sphere formation of neuroblastoma BE(2)-C cells. Environ. Health Prev. Med. 2012, 17, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Mineva, N.D.; Paulson, K.E.; Naber, S.P.; Yee, A.S.; Sonenshein, G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS ONE 2013, 8, e73464. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; et al. (−)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/beta-catenin pathway. Nutrients 2017, 9, 572. [Google Scholar] [CrossRef]
- Kumazoe, M.; Takai, M.; Hiroi, S.; Takeuchi, C.; Yamanouchi, M.; Nojiri, T.; Onda, H.; Bae, J.; Huang, Y.; Takamatsu, K.; et al. PDE3 inhibitor and EGCG combination treatment suppress cancer stem cell properties in pancreatic ductal adenocarcinoma. Sci. Rep 2017, 7, 1917. [Google Scholar] [CrossRef]
- Chani, B.; Puri, V.; Chander Sobti, R.; Puri, S. Epigallocatechin gallate inhibits mouse mesenchymal stem cell differentiation to adipogenic lineage. J. Stem Cells Regen. Med. 2016, 12, 16–24. [Google Scholar]
- Bennett, W.P.; Hollstein, M.C.; Metcalf, R.A.; Welsh, J.A.; He, A.; Zhu, S.M.; Kusters, I.; Resau, J.H.; Trump, B.F.; Lane, D.P.; et al. p53 mutation and protein accumulation during multistage human esophageal carcinogenesis. Cancer Res. 1992, 52, 6092–6097. [Google Scholar]
- Liu, X.; Zhang, M.; Ying, S.; Zhang, C.; Lin, R.; Zheng, J.; Zhang, G.; Tian, D.; Guo, Y.; Du, C.; et al. Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma. Gastroenterology 2017, 153, 166–177. [Google Scholar] [CrossRef]
- Shimada, H. p53 molecular approach to diagnosis and treatment of esophageal squamous cell carcinoma. Ann. Gastroenterol. Surg. 2018, 2, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Wang, P.; Gao, Y.; He, J. The high expression instead of mutation of p53 is predictive of overall survival in patients with esophageal squamous-cell carcinoma: A meta-analysis. Cancer Med. 2017, 6, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Kandioler, D.; Schoppmann, S.F.; Zwrtek, R.; Kappel, S.; Wolf, B.; Mittlbock, M.; Kuhrer, I.; Hejna, M.; Pluschnig, U.; Ba-Ssalamah, A.; et al. The biomarker TP53 divides patients with neoadjuvantly treated esophageal cancer into 2 subgroups with markedly different outcomes. A p53 Research Group study. J. Thorac. Cardiovasc. Surg. 2014, 148, 2280–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.Y.; Han, Z.; Li, X.; Xie, H.H.; Zhu, S.S. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer. Oncol. Lett. 2017, 14, 3623–3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Mezencev, R.; Kim, B.; Wang, L.; McDonald, J.; Sulchek, T. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 2012, 7, e46609. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.Y.; Fujiki, H. Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins. Molecules 2016, 21, 1566. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2019, 11, 39. [Google Scholar] [CrossRef]
- Boehm, K.; Borrelli, F.; Ernst, E.; Habacher, G.; Hung, S.K.; Milazzo, S.; Horneber, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2009, 3, Cd005004. [Google Scholar] [CrossRef]
- Liang, Y.R.; Lu, J.L.; Shang, S.L. Effects of gibberellins on chemical composition and quality of tea (Camellia sinensis L.). J. Sci. Food Agric. 1996, 72, 411–414. [Google Scholar] [CrossRef]
Search Strategy | Details |
---|---|
Inclusion criteria |
|
Exclusion criteria |
|
Time filter | None (from inception) |
Databases | Pubmed/Medline, Embase and Web of science |
Author [Reference] Location Year | Study Type Number of Subjects/Participants | Green Tea Drinking: Frequency or Amount | Risk Estimate of RR (95% CI) | Comments |
---|---|---|---|---|
Zheng et al. [32] 2012 | Meta-analysis 8 case control 2 cohort studies 33,731 participants 3557 cases | Males and Females | No significant association between green tea consumption and EC risk, but an evidence of protective effect was observed among female. | |
Non-tea drinker | 1.00 | |||
Tea drinker | 0.86 (0.7–1.03) | |||
Males | ||||
Non-tea drinker | 1.00 | |||
Tea drinker | 1.04 (0.49–1.59) | |||
Females | ||||
Non-tea drinker | 1.00 | |||
Tea drinker | 0.43 (0.21–0.66) | |||
Nechuta et al. [28] China 2012 | Prospective cohort study 69,310 participants | Non-tea drinker | 1.00 | Adjusted for age, marital status, education, occupation, BMI, exercise, fruit and vegetable intake, meat intake, diabetes, and family history of digestive system cancer. |
Tea drinker: | ||||
Amount | ||||
<100 g/month | 0.87 (0.55–1.37) | |||
100–150 g/month | 0.74 (0.47–1.17) | |||
≥150 g/month | 0.76 (0.48–1.19) | |||
Non-tea drinker | 1.00 | |||
Tea drinker: | ||||
Duration | ||||
<10 years | 0.85 (0.55–1.32) | |||
10–19 years | 0.77 (0.46–1.28) | |||
≥20 years | 0.74 (0.49, 1.14) | |||
Overall | ||||
Non-tea drinker | 1.00 | |||
Green tea drinker | 0.77 (0.57–1.03) | |||
Zheng et al. [30] 2013 | Meta-analysis 14 case control 2 cohort studies 487,894 controls 7376 cases 8,874,734 participants | Overall | Green tea consumption was slightly inversely associated with EC risk, and it was more evident in Chinese population. No protective effect was found for black tea consumption. | |
Non-tea drinker | 1.00 | |||
Green tea drinker | 0.77 (0.57–1.04) | |||
China | ||||
Non-tea drinker | 1.00 | |||
Green tea drinker | 0.64 (0.44–0.95) | |||
Sang et al. [31] 2013 | Meta-analysis 10 case control 2 cohort studies 487,894 controls 3821 cases | Males and Females | No significant association between green tea consumption and risk of EC. However, subgroup analysis showed a significant reduction (54%) in risk of EC in women with the highest green tea consumption compared with no/occasional drinkers. | |
Non-tea drinker | 1.00 | |||
Tea drinker | 1.14 (0.97–1.35) | |||
Moderate Drinker | 0.94 (0.77–0.13) | |||
Little-drinker | 0.97 (0.77–1.22) | |||
Females | ||||
Non-tea drinker | 1.00 | |||
Tea drinker | 0.46 (0.29–0.73) | |||
Oze et al. [39] Japan 2014 | Hospital based case control study 961/2883 | Frequency | Models included age, sex, coffee and green tea intake, cumulative smoking, alcohol consumption, fruit and vegetable intake, body mass index, occupation and frequency of rice intake. | |
Less than 1cup/day | 1.00 | |||
1 cup/day | 1.20 (0.82–1.77) | |||
2 cups/day | 1.00 (0.65–1.65) | |||
≥3 cups/day | 1.31 (0.95–1.81) | |||
Zamora-Ros et al. [40] 9 European countries 2014 | Prospective cohort study 442,143 participants | Non-tea drinker | 1.00 | Adjusted for center, sex, age, educational level, smoking status and intensity, physical activity, energy intake, daily consumption of fruit, vegetables, red and processed meat and coffee and tea mutually. |
Green tea drinker | ||||
Amount | ||||
<178.6 mg/d | 0.85 (0.60–1.20) | |||
≥178.6 mg/d | 0.74 (0.51–1.08) | |||
Das et al. [34] India 2015 | Hospital based case control study 39/41 | Tea drinker | Drinking tea ≥ 3 cups/day, the occurrence rate of ESCC increased. | |
cups/day | ||||
2 | p = 0.0003 | |||
3 | ||||
4 | ||||
Tai et al. [41] China 2017 | Population-based case-control study 167/167 | Tea temperature: | Age, sex, education level, body mass index, smoking status, alcohol drinking, family history of cancer in first degree relatives, and daily intakes of vegetables and fruits | |
Low or mild (<60 °C) | 1.0 | |||
High (≥60 °C) | 2.23 (1.45–2.90) | |||
Yang et al. [42] China 2018 | Population based case control study 1355/1962 | Never tea drinking | 1.00 | Adjusted for age, marital status, education, occupation, family wealth score, body mass index 10 years ago, sum of missing and filled teeth, number of tooth brushing per day, smoking pack-years, alcohol consumption intensity and family history of EC among first-degree relatives. |
Hot tea drinking | 2.15 (1.52–3.05) | |||
Yu et al. [43] China 2018 | Population based cohort study 456,155 participants | Frequency * | Adjusted for age, sex, education, marital status, household income, physical activity, intake of red meat, fresh fruits and vegetables and preserved vegetables, body mass index, family history of cancer, and tobacco smoking. *: Participants who consumed pure alcohol <15 g/day or didn’t drink alcohol everyday **: Participants who consumed pure alcohol >15 g/day All of the data was calculated with participants who consumed tea less than weekly and consumed <15 g/d of pure alcohol as the reference category. | |
Less Than Weekly | 1.00 | |||
Weekly | 0.82 (0.57–1.18) | |||
Daily | ||||
Warm | 0.92 (0.66–1.30) | |||
Hot | 1.23 (0.96–1.59) | |||
Burning hot | 1.36 (1.00–1.86) | |||
Frequency ** | ||||
Less Than Weekly | 1.90 (1.57–2.31) | |||
Weekly | 2.60 (1.79–3.76) | |||
Daily | ||||
Warm | 3.74 (2.86–4.90) | |||
Hot | 3.84 (3.06–4.83) | |||
Burning hot | 5.00 (3.64–6.88) |
Author/ Reference | Compound/ Doses | Cell Line | Animal Model | Observed Effects | |
---|---|---|---|---|---|
Ye et al. [17] | EGCG 20–40 μM | TE-8 SKGT-4 | NA | ↓ ↑ | Cell proliferation, Invasion, pERK1/2, c-Jun, COX-2 Caspase-3 |
Ye et al. [17] | EGCG 50 μg/kg/day | NA | Nude mouse xenograft | ↓ | Tumor growth, Ki67, pERK1/2, COX-2 |
Hou et al. [19] | EGCG 5–50 μM | KYSE150 OE-19 | NA | ↓ | EGFR, pEGFR, HER-2/neu, pHER-2/neu, PDGFRβ and colony formation |
Liu et al. [22] | EGCG 0–400 μM | Eca-109 Te-1 | NA | ↓ ↑ | Proliferation, Cell cycle, VEGF Apoptosis, ROS, cleaved caspase-3 |
Liu et al. [22] | EGCG 10 mg/kg/day | NA | Nude mouse xenograft | ↓ ↑ | VEGF, Tumor growth Cleaved-caspase-3 |
Gao et al. [23] | EGCG 50 μM | Eca-109 | NA | ↑ | Apoptosis, Caspase-3, Caspase-9, JNK, P38 |
Meng et al. [44] | EGCG 0–200 mg/L | Eca-109 | NA | ↓ ↑ | Cell proliferation Apoptosis, p16 gene demethylation |
Liu et al. [45] | EGCG 0–400 mg/L | Ec-9706 Eca-109 | NA | ↓ ↑ | Cell proliferation, telomerase activity, mitochondrial membrane potential Apoptosis, Caspase-3 |
Liu et al. [46] | EGCG 0–400 mg/L | Ec-9706 Eca-109 | NA | ↓ ↑ | Cell proliferation, Bcl-2 Apoptosis, Bax, Caspase-3 |
Li et al. [47] | EGCG4–10 mg/kg | NA | NMBA-induced F344 rat | ↓ | Cyclin D1, COX-2, PGE-2, tumor growth, EC incidence rate |
Song et al. [48] | Polyphenon E 20–40 μg/mL | SEG-1 BIC-1 SKGT-4 BE-3 | NA | ↓ ↑ | Cell proliferation, Cyclin D1, Apoptosis, dephosphorylation of Rb |
Chen et al. [49] | Green tea 1–5 g | NA | NMBA-induced Wistar rat | ↓ | Tumor incidence, tumor growth, DNA methylation, urinary N-nitrosoproline (NPRO) excretion, incidences of general lesions and precancerous lesions |
Fang et al. [50] | EGCG 5–50 μM | KYSE 510 | NA | ↓ ↑ | DNMT, cell growth Reversal of hypermethylation and reactivation of RARβ, MGMT, p16INK4a and hMLH1 |
Morse et al. [51] | EGCG 360 or 1200 ppm | NA | NMBA-induced F344 rat | ↓ | Tumor incidence, tumor multiplicity |
Wang et al. [52] | 0.6% or 0.9% green tea extract | NA | NMBA- induced rat model | ↓ | Tumor incidence, tumor multiplicity, tumor growth |
Reference | Ingredient | Drug | Cell Line | Cytotoxic Action |
---|---|---|---|---|
Ye et al. [17] 2012 | EGCG 20–40 μM or 50 μg/kg/day | Curcumin, lovastatin, or curcumin and lovastatin | SKGT-4 TE-8 | Suppressing tumor cell viability and invasion; inhibiting xenograft tumor growth in nude mouse through downregulating the expression of p-ERK1/2, c-Jun and COX-2; upregulating caspase 3 expression. |
Gao et al. [19] 2013 | EGCG 50 μM | Vitamin C | Eca-109 | Vitamin C could enhance the therapeutic properties of EGCG, activate caspase-3/9, induce apoptosis and regulate MAPK pathways. |
Hou et al. [23] | EGCG 5–50 μM | SOD | KYSE150 | EGCG was stabilized by SOD, and the growth inhibitory effect of EGCG on EC cell was potentiated by downregulating the activity of EGFR or HER-2/neu. |
Liu et al. [46] 2017 | EGCG 0–400 mg/L | ADM | Eca-109 | EGCG promoted the rate of apoptosis and reversal of multidrug resistance induced by ADM through reducing the ABCG2 expression of Eca109/ABCG2 cells. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-X.; Shi, Y.-L.; Zhang, L.-J.; Wang, K.-R.; Xiang, L.-P.; Cai, Z.-Y.; Lu, J.-L.; Ye, J.-H.; Liang, Y.-R.; Zheng, X.-Q. Inhibitory Effects of (−)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules 2019, 24, 954. https://doi.org/10.3390/molecules24050954
Wang L-X, Shi Y-L, Zhang L-J, Wang K-R, Xiang L-P, Cai Z-Y, Lu J-L, Ye J-H, Liang Y-R, Zheng X-Q. Inhibitory Effects of (−)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules. 2019; 24(5):954. https://doi.org/10.3390/molecules24050954
Chicago/Turabian StyleWang, Liu-Xiang, Yun-Long Shi, Long-Jie Zhang, Kai-Rong Wang, Li-Ping Xiang, Zhuo-Yu Cai, Jian-Liang Lu, Jian-Hui Ye, Yue-Rong Liang, and Xin-Qiang Zheng. 2019. "Inhibitory Effects of (−)-Epigallocatechin-3-gallate on Esophageal Cancer" Molecules 24, no. 5: 954. https://doi.org/10.3390/molecules24050954
APA StyleWang, L. -X., Shi, Y. -L., Zhang, L. -J., Wang, K. -R., Xiang, L. -P., Cai, Z. -Y., Lu, J. -L., Ye, J. -H., Liang, Y. -R., & Zheng, X. -Q. (2019). Inhibitory Effects of (−)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules, 24(5), 954. https://doi.org/10.3390/molecules24050954