In Vitro Toxicity Study of a Porous Iron(III) Metal‒Organic Framework
Abstract
:1. Introduction
2. Results
2.1. Preparation and Characterization of MIL-100(Fe)
2.2. Effect of MIL-100(Fe) on HL-7702 Cells
2.3. Effect of MIL-100(Fe) on HepG2 Cells
3. Discussion
4. Conclusions
5. Experimental Section
5.1. Materials
5.2. Synthesis and Characterization of MIL-100(Fe)
5.3. Cell Culture
5.4. Cell Viability Assay
5.5. Cell Membrane Damage Determination
5.6. DAPI Fluorescence Staining
5.7. Apoptosis Analysis
5.8. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MOFs | Metal‒organic frameworks |
PCP | Porous coordination polymer |
LD50 | Lethal dose 50% |
MIL | Material Institut Lavoisier |
H3BTC | 1,3,5-Benzenetricarboxylic acid |
PBS | Phosphate-buffered saline |
SGF | Simulated gastric fluid |
PC3 | Human prostate cancer cell line |
HUVEC | Human umbilical vein endothelial cells |
HMEC | Human microvascular endothelial cells |
MLE12 | Murine alveolar epithelial cells |
MH-S | Mouse alveolar macrophage cell line |
MCF-7 | Human breast adenocarcinoma cell line |
CCRF-CEM | Human leukemia |
RPMI-8226 | Human multiple myeloma |
J774 | Human macrophages |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
TGA | Thermogravimetric analysis |
FITC | Annexin V-fluoresce isothiocyanate |
LDH | Lactate dehydrogenase |
HL-770 | Normal liver cells |
HepG2 | Liver hepatocellular carcinoma |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny-ltetrazolium bromide |
DAPI | 4’,6-diamidino-2-phenylindole |
PI | Propidium iodide |
IC50 | Half-maximal inhibitory concentrations |
DRG | Rat neonatal organotypic dorsal root ganglion |
DMEM | Dulbecco’s modified Eagle’s medium |
DMSO | Dimethyl sulfoxide |
FBS | Fetal bovine serum |
References
- Andrew, D. The Chemistry of Metal–Organic Frameworks. Synthesis, Characterization, and Applications, 2 Bände. Herausgegeben von Stefan Kaskel. Angew. Chem. 2017, 129, 1471. [Google Scholar]
- Kajiro, H.; Kondo, A.; Kaneko, K.; Kanoh, H. Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions. Int. J. Mol. Sci. 2010, 11, 3803–3845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480. [Google Scholar] [CrossRef]
- Reinsch, H.; Stock, N. Synthesis of MOFs: A personal view on rationalisation, application and exploration. Dalton Trans. 2017, 46, 8339–8349. [Google Scholar] [CrossRef]
- Tamames-Tabar, C.; García-Márquez, A.; Blanco-Prieto, M.J.; Serre, C.; Horcajada, P. MOFs in Pharmaceutical Technology. Bio- Bioinspired Nanomater. 2014, 83–112. [Google Scholar] [CrossRef]
- Suo, Q.; Zi, J.; Bai, Z.; Qi, S. The Glycolysis of Poly(ethylene terephthalate) Promoted by Metal Organic Framework (MOF) Catalysts. Catal. Lett. 2017, 147, 240–252. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q. Vapochromic behavior of MOF for selective sensing of ethanol. Spectrochim. Acta Part A 2017, 194, 158–162. [Google Scholar] [CrossRef]
- Alkordi, M.H.; Belmabkhout, Y.; Cairns, A.; Eddaoudi, M. Metal–organic frameworks for H2 and CH4 storage: Insights on the pore geometry–sorption energetics relationship. Iucrj 2017, 4, 131–135. [Google Scholar] [CrossRef]
- Sava Gallis, D.F.; Shea-Rohwer, L.E.; Rodriguez, M.A.; Barnhart-Dailey, M.C.; Butler, K.S.; Luk, T.S. A Multifunctional, Tunable MOF Materials Platform for Bio-Imaging Applications. ACS Appl. Mater. Interfaces 2017, 9, 22268–22277. [Google Scholar] [CrossRef]
- Mínguez, E.; Guillermo, C.E. Magnetic functionalities in MOFs: From the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557. [Google Scholar] [CrossRef]
- Wu, M.X.; Yang, Y.W. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mat. 2017, 29, 1606134. [Google Scholar] [CrossRef]
- He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115, 11079–11108. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A. The applications of metal-organic-frameworks in controlled release of drugs. Rev. J. Chem. 2017, 7, 1–22. [Google Scholar] [CrossRef]
- Ibrahim, M.; Sabouni, R.; Husseini, G. Anti-Cancer Drug Delivery Using Metal Organic Frameworks (MOFs). Curr. Med. Chem. 2017, 24, 193–214. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.N.; Xu, X.-Y.; Lian, X.; Zhang, C.; Yan, B. A Luminescent 3d-4f-4d MOF Nanoprobe as a Diagnosis Platform for Human Occupational Exposure to Vinyl Chloride Carcinogen. Inorg. Chem. 2017, 56, 11176–11183. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, W.; Liu, R.; Zhang, J.; Zhang, D.; Li, Z. Rational Design of MOF Nanocarrier-Based Co-Delivery System of Doxorubicin Hydrochloride/Verapamil Hydrochloride for Overcoming Multidrug Resistance with Efficient Targeted Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 19687–19697. [Google Scholar] [CrossRef]
- Tan, L.L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B. Zn\r, 2+\r, -Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small 2015, 11, 3807–3813. [Google Scholar] [CrossRef]
- Vasconcelos, I.B.; Wanderley, K.A.; Rodrigues, N.M.; Da Costa, N.B.; Freire, R.O.; Junior, S.A. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study. J. Mol. Struct. 2017, 1131, 36–42. [Google Scholar] [CrossRef]
- Ananthoji, R.; Eubank, J.F.; Nouar, F.; Mouttaki, H.; Eddaoudi, M.; Harmon, J.P. Symbiosis of zeolite-like metal–organic frameworks (rho-ZMOF) and hydrogels: Composites for controlled drug release. J. Mater. Chem. 2011, 21, 9587–9594. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Shen, L.; Xu, H.; Yang, Y. Quantitative Correlation Between Cross-Linking Degrees and Mechanical Properties of Protein Films Modified with Polycarboxylic Acids. Macromol. Mater. Eng. 2015, 300, 1133–1140. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, J. Development of a folate receptor (FR)-targeted indenoisoquinoline using a pH-sensitive N-ethoxybenzylimidazole (NEBI) bifunctional cross-linker. Bioconjugate Chem. 2014, 25, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Reboul, J.; Stéphane, D.; Sumida, K.; Kitagawa, S. Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734. [Google Scholar] [CrossRef]
- Wang, Z.; Tanabe, K.K.; Cohen, S.M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg. Chem. 2009, 48, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Grall, R.; Hidalgo, T.; Delic, J.; Garcia-Marquez, A.; Horcajada, P. In vitro biocompatibility of mesoporous metal (III.; Fe, Al, Cr) trimesate MOF nanocarriers. J. Mater. Chem. B 2015, 3, 8279–8292. [Google Scholar] [CrossRef]
- Liang, R.; Luo, S.; Jing, F.; Shen, L.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B 2015, 176–177, 240–248. [Google Scholar] [CrossRef]
- Liang, R.W.; Huang, R.K.; Ying, S.M. Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light. Nano. Res. 2018, 11, 1109–1123. [Google Scholar] [CrossRef]
- Sadegh, R.; Hassan, A. Synthesis and Catalytic Application of Mixed Valence Iron (FeII/FeIII)-Based OMS-MIL-100(Fe) as an Efficient Green Catalyst for the aza-Michael Reaction. Catal. Lett. 2018, 148, 2918–2928. [Google Scholar]
- Yanmei, Z.; Fan, Z.; Xiang, Z.; Yingmei, X.; Xiaohui, Q.; Chunshan, Q. Assembly and Post-modification of Fe3O4@MIL-100(Fe) for Knoevenagel Condensation. Chem. Res. Chin. Univ. 2018, 34, 655–660. [Google Scholar]
- Tian, H.; Peng, J.; Du, Q.; Hui, X.H.; He, H. One-pot sustainable synthesis of magnetic MIL-100(Fe) with novel Fe3O4 morphology and its application in heterogeneous degradation. Dalton Trans. 2018, 47, 3417–3424. [Google Scholar] [CrossRef]
- Li, S.; Huo, F. Metal-organic framework composites: From fundamentals to applications. Nanoscale 2015, 46, 7482–7501. [Google Scholar] [CrossRef] [PubMed]
- Sene, S.; Marcos-Almaraz, M.T.; Menguy, N.; Scola, J.; Volatron, J.; Rouland, R. Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. Chem 2017, 3, 303–322. [Google Scholar] [CrossRef]
- Taherzade, S.D.; Soleimannejad, J.; Tarlani, A. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. Nanomaterials 2017, 7, 215. [Google Scholar] [CrossRef] [PubMed]
- Lajevardi, A.; Hossaini Sadr, M.; Tavakkoli Yaraki, M.; Badiei, A.; Armaghan, M. pH-Responsive and Magnetic Fe3O4@Silica@MIL-100(Fe)/β-CD Nanocomposite as Drug Nanocarrier: Loading and Release Study of Cephalexin. New J. Chem. 2018, 42, 9690–9701. [Google Scholar] [CrossRef]
- Rezaei, M.; Abbasi, A.; Varshochian, R.; Dinarvand, R.; Jeddi-Tehrani, M. NanoMIL-100(Fe) containing docetaxel for breast cancer therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1390–1401. [Google Scholar] [CrossRef]
- Wuttke, S.; Zimpel, A.; Bein, T.; Braig, S.; Stoiber, K.; Vollmar, A. Validating Metal-Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Adv. Healthcare Mater. 2017, 6, 1600818. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2009, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Liu, H.; Zhang, J. Liver. J. Biol. Chem. 2018, 282, 27277–27284. [Google Scholar]
- Arora, S.; Rajwade, J.M.; Paknikar, K.M. Nanotoxicology and in vitro studies: The need of the hour. Toxicol. Appl. Pharmacol. 2012, 258, 151–165. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Gumma, S.; Purkait, M.K. Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous Mesoporous Mater. 2018, 259, 203–210. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Li, Z. A Low Cytotoxic Metal–Organic Framework Carrier: pH-Responsive 5-Fluorouracil Delivery and Anti-Cervical Cancer Activity Evaluation. J. Cluster Sci. 2018, 29, 1285–1290. [Google Scholar] [CrossRef]
- Sun, L.L.; Li, Y.H.; Shi, H. A Ketone Functionalized Gd(III)-MOF with Low Cytotoxicity for Anti-Cancer Drug Delivery and Inhibiting Human Liver Cancer Cells. J. Cluster Sci. 2019, 30, 251–258. [Google Scholar] [CrossRef]
- Leng, X.; Dong, X.; Wang, W.; Sai, N.; Yang, C.; You, L.; Huang, H.; Yin, X.; Ni, J. Biocompatible Fe-Based Micropore Metal-Organic Frameworks as Sustained-Release Anticancer Drug Carriers. Molecules 2018, 23, 2490. [Google Scholar] [CrossRef]
- Jurisic, V.; Konjevic, G.; Jancic-Nedeljkov, R.; Sretenovic, M.; Banicevic, B.; Colovic, M.; Spuzic, I. The comparison of spontaneous LDH release activity from cultured PBMC with sera LDH activity in non-Hodgkin’s lymphoma patients. Med. Oncol. 2004, 21, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Lallas, G.C.; Courtis, N.; Havredaki, M. K562 cell sensitization to 5-fluorouracil- or interferon-alpha-induced apoptosis via cordycepin (3’-deoxyadenosine): Fine control of cell apoptosis via poly(A) polymerase upregulation. Int. J. Biol. Markers 2004, 19, 58. [Google Scholar] [PubMed]
- Zink, D.; Sadoni, N.; Stelzer, E. Visualizing Chromatin and Chromosomes in Living Cells. Methods 2003, 29, 42–50. [Google Scholar] [CrossRef]
- Duan, X.M.; Song, Y.Q.; Tan, Y.; Fang, Y.Q.; Xu, S.F.; Cheng, Y.Y. Study on apoptosis of K562 cells staining with Annexin V/PI induced by high-voltage pulse electric field. Chin. J. Immunology 2008, 24, 161–166. [Google Scholar]
- Han, C.; Yang, J.; Gu, J. Immobilization of silver nanoparticles in Zr-based MOFs: Induction of apoptosis in cancer cells. J. Nanopart. Res. 2018, 20, 77. [Google Scholar] [CrossRef]
- Horcajada, P.; Surbl, S.; Serre, C.; Hong, D.Y.; Seo, Y.K.; Chang, J.S. Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun. 2007, 27, 2820. [Google Scholar] [CrossRef]
- Yoon, J.W.; Seo, Y.K.; Hwang, Y.K.; Chang, J.S.; Leclerc, H.; Wuttke, S. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. Engl. 2010, 49, 5949–5952. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Feng, T.; Yang, C.; Wang, W.; Sa, Y.; Feng, Y. Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques. Apoptosis 2018, 23, 290–298. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
MOFs and MOFs-Objects | Cells | Dose (μg/mL) | Cell Viability | Toxic Grade | Reference |
---|---|---|---|---|---|
MIL-100(Fe) | PC3 | 100 (24 h) | 75% | low | Saad et al. [32] |
MIL/USPIO-cit(10) | PC3 | 100 (24 h) | 75% | low | Saad et al. [32] |
MIL-100(Fe) | HUVEC | 200 (24 h) | 100% | none | Stefan et al. [37] |
HMEC | 200 (72 h) | 85% | low | Stefan et al. [37] | |
MLE12 | 200 (24 h) | 10% | high | Stefan et al. [37] | |
MH-S | 200 (24 h) | 10% | high | Stefan et al. [37] | |
Gingival Fibroblasts | 200 (24 h) | 100% | none | Stefan et al. [37] | |
Human Schwann | 200(24 h) | 60% | medium | Stefan et al. [37] | |
MIL-100(Fe)@DOPC | HUVEC | 200 (24 h) | 100% | none | Stefan et al. [37] |
HMEC | 200 (72 h) | 60% | medium | Stefan et al. [37] | |
MLE12 | 200 (24 h) | 40% | high | Stefan et al. [37] | |
MH-S | 200 (24 h) | 20% | high | Stefan et al. [37] | |
nanoMIL-100(Fe) | MCF-7 | 100 (72 h) | 94% | none | Mahsa et al. [35] |
MIL-100(Fe) | CCRF-CEM | 5000(48 h) | >85% | low | Patricia et al. [38] |
RPMI-8226 | 5000(48 h) | >85% | low | Patricia et al. [38] | |
J744 | 5000(48 h) | >85% | low | Patricia et al. [38] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Leng, X.; Luo, J.; You, L.; Qu, C.; Dong, X.; Huang, H.; Yin, X.; Ni, J. In Vitro Toxicity Study of a Porous Iron(III) Metal‒Organic Framework. Molecules 2019, 24, 1211. https://doi.org/10.3390/molecules24071211
Chen G, Leng X, Luo J, You L, Qu C, Dong X, Huang H, Yin X, Ni J. In Vitro Toxicity Study of a Porous Iron(III) Metal‒Organic Framework. Molecules. 2019; 24(7):1211. https://doi.org/10.3390/molecules24071211
Chicago/Turabian StyleChen, Gongsen, Xin Leng, Juyuan Luo, Longtai You, Changhai Qu, Xiaoxv Dong, Hongliang Huang, Xingbin Yin, and Jian Ni. 2019. "In Vitro Toxicity Study of a Porous Iron(III) Metal‒Organic Framework" Molecules 24, no. 7: 1211. https://doi.org/10.3390/molecules24071211
APA StyleChen, G., Leng, X., Luo, J., You, L., Qu, C., Dong, X., Huang, H., Yin, X., & Ni, J. (2019). In Vitro Toxicity Study of a Porous Iron(III) Metal‒Organic Framework. Molecules, 24(7), 1211. https://doi.org/10.3390/molecules24071211