Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings
Abstract
:1. Introduction
2. Results
2.1. Nanoparticles Characterization
2.2. NEPCM Characterization
3. Materials and Methodology
3.1. Samples Preparation
3.2. Methodology
3.2.1. Nanoparticles Characterization
3.2.2. NEPCM Characterization
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Global Energy & CO2 Status Report; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Diarce, G.; Campos-celador, Á.; Martin, K.; Urresti, A.; García-romero, A.; Sala, J.M. A comparative study of the CFD modeling of a ventilated active façade including phase change materials. Appl. Energy 2014, 126, 307–317. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- De Gracia, A.; Cabeza, L.F. Phase change materials and thermal energy storage for buildings. Energy Build. 2015, 103, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Mccormack, S.J.; Huang, M.J.; Norton, B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 2010, 84, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.Z.W.; Zhou, Y.; Feng, J.; Fang, X.; Ling, Z. Compounding MgCl2·6H2O with NH4Al(SO4)2·12H2O or KAl(SO4)2·12H2O to Obtain Binary Hydrated Salts as High-Performance Phase Change. Molecules 2019, 24, 363. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Zuo, J.; Huang, K.; Zhang, L. Phase change materials for solar thermal energy storage in residential buildings in cold climate. Renew. Sustain. Energy Rev. 2015, 48, 692–703. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Thermochimica Acta Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Hoang, H.M.; Leducq, D.; Pérez Masia, R.; Lagaron, J.M.; Alvarez, G. Heat transfer modelling of encapsulated phase change materials for food packaging. In Proceedings of the 3rd IIR International Conference on Sustainability and the Cold Chain, ICCC 2014, Jun 2014, London, France. 3rd IIR International Conference on Sus-tainability and the Cold Chain, London, UK, 23–25 June 2014; pp. 405–411. [Google Scholar]
- Oró, E.; de Gracia, A.; Castell, A.; Farid, M.M.; Cabeza, L.F. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl. Energy 2012, 99, 513–533. [Google Scholar] [CrossRef]
- Jaguemont, J.; Omar, N.; van den Bossche, P.; Mierlo, J. Phase-change materials (PCM) for automotive applications: A review. Appl. Therm. Eng. 2018, 132, 308–320. [Google Scholar] [CrossRef]
- Kalnæs, S.E.; Jelle, B.P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy Build. 2015, 94, 150–176. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Lin, W.; Sohel, M.I. Nano-enhanced phase change materials for improved building performance. Renew. Sustain. Energy Rev. 2016, 58, 1256–1268. [Google Scholar] [CrossRef] [Green Version]
- Şahan, N.; Fois, M.; Paksoy, H.O. The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. Int. J. Energy Res. 2016, 40, 198–206. [Google Scholar] [CrossRef]
- Yu, S.; Jeong, S.-G.; Chung, O.; Kim, S. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2014, 120, 549–554. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Li, Y. Thermal Properties of Phase Change Composites Containing Ferric Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 3276–3279. [Google Scholar] [CrossRef]
- Kibria, M.A.; Anisur, M.R.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers. Manag. 2015, 95, 69–89. [Google Scholar] [CrossRef]
- Pavlík, Z.; Fiala, L.; Černý, R. Application of Maxwell Mixing Rule in the Measurement of Thermal Conductivity of Porous Building Materials. In Proceedings of the Meeting of the Thermophysical Society, Bratislava, Slovakia, 11–12 October 2007; pp. 34–38. [Google Scholar]
- Pretsch, E.; Simon, W.; Seibl, J.; Clerc, T.; Mukerjee, R. Tables of Spectral Data for Structure Determination of Organic Compounds, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Angayarkanni, S.A.; Philip, J. Review on thermal properties of nanofluids: Recent developments. Adv. Colloid Interface Sci. 2015, 225, 146–176. [Google Scholar] [CrossRef]
- Wu, S.Y.; Wang, H.; Xiao, S. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J. Therm. Anal. Calorim. 2012, 110, 1127. [Google Scholar] [CrossRef]
- Sahan, N.; Paksoy, H.O. Thermal enhancement of paraffin as a phase change material with nanomagnetite. Sol. Energy Mater. Sol. Cells 2014, 126, 56–61. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Palacios, A.; de Gracia, A.; Haurie, L.; Fernández, A.I.; Barreneche, C. Study of the thermal properties and the fire performance of flame retardant-organic PCM in bulk form. Materials 2018, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, J.M.; Nsofor, E.C. Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl. Therm. Eng. 2016, 108, 596–604. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Cerritelli, G.F.; Miliozzi, A.; Kenny, J.M. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res. Lett. 2013, 8, 448. [Google Scholar] [CrossRef] [PubMed]
- Miró, L.; Barreneche, C.; Ferrer, G.; Solé, A.; Martorell, I.; Cabeza, L.F. Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochim. Acta 2016, 627, 39–47. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
α (m) | ρnp (kg/m3) | ρbf (kg/m3) | η (kg/m·s) | S (m/s) | |
---|---|---|---|---|---|
CA 1.0 wt.% | 4.50 × 10−8 | 6300 | 893 | 6.99 × 10−3 | 3.41 × 10−9 |
CA 1.5 wt.% | 4.50 × 10−8 | 6300 | 893 | 7.30 × 10−3 | 3.27 × 10−9 |
CA 3.0 wt.% | 4.50 × 10−8 | 6300 | 893 | 7.48 × 10−3 | 3.19 × 10−9 |
PA 1.0 wt.% | 4.50 × 10−8 | 6300 | 852 | 7.99 × 10−3 | 2.99 × 10−9 |
PA 1.5 wt.% | 4.50 × 10−8 | 6300 | 852 | 8.24 × 10−3 | 2.90 × 10−9 |
PA 3.0 wt.% | 4.50 × 10−8 | 6300 | 852 | 8.26 × 10−3 | 2.89 × 10−9 |
CA | CA 1.0 wt.% | CA 1.5 wt.% | CA 3.0 wt.% | PA | PA 1.0 wt.% | PA 1.5 wt.% | PA 3.0 wt.% | |
---|---|---|---|---|---|---|---|---|
Maximum Working Temperature (°C) | 108.7 | 108.2 | 100.1 | 98.5 | 186.5 | 165.1 | 150.0 | 149.2 |
Samples | Capric Acid | Palmitic Acid | Nano CuO Particles |
---|---|---|---|
CA | 100.0 wt.% | --- | --- |
CA 1.0 wt.% | 99.0 wt.% | --- | 1.0 wt.% |
CA 1.5 wt.% | 98.5 wt.% | --- | 1.5 wt.% |
CA 3.0 wt.% | 97.0 wt.% | --- | 3.0 wt.% |
PA | --- | 100.0 wt.% | --- |
PA 1.0 wt.% | --- | 99.0 wt.% | 1.0 wt.% |
PA 1.5 wt.% | --- | 98.5 wt.% | 1.5 wt.% |
PA 3.0 wt.% | --- | 97.0 wt.% | 3.0 wt.% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreneche, C.; Martín, M.; Calvo-de la Rosa, J.; Majó, M.; Fernández, A.I. Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings. Molecules 2019, 24, 1232. https://doi.org/10.3390/molecules24071232
Barreneche C, Martín M, Calvo-de la Rosa J, Majó M, Fernández AI. Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings. Molecules. 2019; 24(7):1232. https://doi.org/10.3390/molecules24071232
Chicago/Turabian StyleBarreneche, Camila, Marc Martín, Jaume Calvo-de la Rosa, Marc Majó, and A. Inés Fernández. 2019. "Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings" Molecules 24, no. 7: 1232. https://doi.org/10.3390/molecules24071232
APA StyleBarreneche, C., Martín, M., Calvo-de la Rosa, J., Majó, M., & Fernández, A. I. (2019). Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings. Molecules, 24(7), 1232. https://doi.org/10.3390/molecules24071232