Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. DN Variation of Different Heat Treatments and Different Botanical Origins
2.2. Spectral Characteristics
2.3. Spectral Cluster Analysis of Honey from Botanical Origins
2.4. Establishment of the DN Determination Model
2.4.1. Comparison of Different Pretreatment Methods
2.4.2. Selection of the Characteristic Wavelengths
2.4.3. Establishment of Non-Linear Determination Models
3. Discussion
4. Materials and Methods
4.1. Sample Preparation (Heat Treatment)
4.2. Reference Method
4.3. Spectral Measurement
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pasias, I.N.; Kiriakou, I.K.; Proestos, C. HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. Food Chem. 2017, 229, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Escuredo, O.; Dobre, I.; Fernández-González, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.; Kontakos, S.; Karabournioti, S.; Kontominas, M.G. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem. 2014, 146, 548–557. [Google Scholar] [CrossRef]
- Tornuk, F.; Karaman, S.; Ozturk, I.; Toker, O.S.; Tastemur, B.; Sagdic, O.; Dogan, M.; Kayacier, A. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind. Crop Prod. 2013, 46, 124–131. [Google Scholar] [CrossRef]
- Aljohar, H.I.; Maher, H.M.; Albaqami, J.; Al-Mehaizie, M.; Orfali, R.; Alrubia, S. Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment. Saudi Pharm. J. 2018, 26, 932–942. [Google Scholar] [CrossRef]
- Sak-Bosnar, M.; Sakač, N. Direct potentiometric determination of diastase activity in honey. Food Chem. 2012, 135, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Kedzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skalecki, P.; Litwinczuk, A. Characterisation of viscosity, colour, 5-hydroxymethylfurfural content and diastase activity in raw rape honey (Brassica napus) at different temperatures. J. Food Sci. Technol. 2016, 53, 2092–2098. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, T.; Zhang, L.F.; Zhang, P. Development of a portable field imaging spectrometer: Application for the identification of sun-dried and sulfur-fumigated Chinese herbals. Appl. Spectrosc. 2016, 70, 879–887. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Li, X.L.; Jin, J.J.; Sun, C.J.; Ye, D.P.; Liu, Y.F. Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy. Food Chem. 2019, 270, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Apriceno, A.; Bucci, R.; Girelli, A.M.; Marini, F.; Quattrocchi, L. 5-Hydroxymethyl furfural determination in Italian honeys by a fast near infrared spectroscopy. Microchem. J. 2018, 143, 140–144. [Google Scholar] [CrossRef]
- Ballabio, D.; Robotti, E.; Grisoni, F.; Quasso, F.; Bobba, M.; Vercelli, S.; Gosetti, F.; Calabrese, G.; Sangiorgi, E.; Orlandi, M.; Marengo, E. Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey. Food Chem. 2018, 266, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-Gonzalez, M.; Espada-Bellido, E.; Guillen-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef]
- Guelpa, A.; Marini, F.; du Plessis, A.; Slabbert, R.; Manley, M. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control 2017, 73, 1388–1396. [Google Scholar] [CrossRef]
- Thamasopinkul, C.; Ritthiruangdej, P.; Kasemsumran, S.; Suwonsichon, T.; Haruthaithanasan, V.; Ozaki, Y. Temperature compensation for determination of moisture and reducing sugar of longan honey by near infrared spectroscopy. J. Near. Infrared Spectrosc. 2017, 25, 36–44. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Diaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef]
- Minaei, S.; Shafiee, S.; Polder, G.; Moghadam-Charkari, N.; van Ruth, S.; Barzegar, M.; Zahiri, J.; Alewijn, M.; Kus, P.M. VIS/NIR imaging application for honey floral origin determination. Infrared Phys. Technol. 2017, 86, 218–225. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy, 1st ed.; Chemical Industry Press: Beijing, China, 2009; pp. 219–247. [Google Scholar]
- Escriche, I.; Visquert, M.; Juan-Borras, M.; Fito, P. Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem. 2009, 112, 329–338. [Google Scholar] [CrossRef]
- Frausto-Reyes, C.; Casillas-Penuelas, R.; Quintanar-Stephano, J.L.; Macias-Lopez, E.; Bujdud-Perez, J.M.; Medina-Ramirez, I. Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim. Acta A 2017, 178, 212–217. [Google Scholar] [CrossRef]
- Janghu, S.; Bera, M.B.; Nanda, V.; Rawson, A. Study on power ultrasound optimization and its comparison with conventional thermal processing for treatment of raw honey. Food Technol. Biotechnol. 2017, 55, 570–579. [Google Scholar] [CrossRef]
- Warui, M.W.; Hansted, L.; Gikungu, M.; Mburu, J.; Kironchi, G.; Bosselmann, A.S. Characterization of Kenyan honeys based on their physicochemical properties, botanical and geographical origin. Int. J. Food Sci. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.A.; Guerra, R.; Cavaco, A.M.; da Costa, A.M.R.; Figueira, A.C.; Brigas, A.F. Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy. Comput. Electron. Agric. 2013, 94, 1–11. [Google Scholar] [CrossRef]
- Michal, S.; Ian, G.; Monika, T.; Jana, P.; Jana, H. A novel approach to assess the quality and authenticity of Scotch Whisky based on gas chromatography coupled to high resolution mass spectrometry. Anal. Chim. Acta 2018, 1042, 60–70. [Google Scholar]
- Liu, W.; Zhang, Y.; Yang, S.; Han, D.H. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochim. Acta A 2018, 196, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.L.; Cen, H.Y.; Zhang, C.; Lyu, X.H.; Weng, H.Y.; Xu, H.X.; He, Y. Nondestructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis. Postharvest Biol. Technol. 2018, 146, 147–154. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Yu, K.Q.; Li, X.L.; He, Y. Detection of fungus infection on petals of rapeseed (Brassica napus L.) using NIR hyperspectral imaging. Sci. Rep. 2016, 6, 38878. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.R.; Yu, K.Q.; Feng, C.; Cen, H.Y.; He, Y. Early detection of aphid (Myzus persicae) infestation on Chinese cabbage by hyperspectral imaging and feature extraction. Trans. ASABE 2017, 60, 1041–1047. [Google Scholar] [CrossRef]
- Tosi, E.; Martinet, R.; Ortega, M.; Lucero, H.; Re, E. Honey diastase activity modified by heating. Food Chem. 2008, 106, 883–887. [Google Scholar] [CrossRef]
- Amelia, P.; Wein, A.S.; Bandeira, A.S.; Moitra, A. Optimality and sub-optimality of PCA I: Spiked random matrix models. Ann. Stat. 2018, 46, 2416–2451. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Regression Algorithm | Pre-Treatment | Calibration | Prediction | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
PLS | ORIG | 0.6086 | 0.4149 | 0.4636 | 0.4642 |
SG | 0.6093 | 0.4145 | 0.4674 | 0.4625 | |
SG-SNV | 0.7049 | 0.3602 | 0.6753 | 0.3612 | |
GF-SNV | 0.7057 | 0.3597 | 0.6720 | 0.3630 | |
MSC | 0.7452 | 0.3348 | 0.5853 | 0.4082 | |
LS-SVM | ORIG | 0.9772 | 0.1339 | 0.6017 | 0.4000 |
SG | 0.9808 | 0.1239 | 0.5350 | 0.4322 | |
SG-SNV | 0.9988 | 0.0321 | 0.8857 | 0.2142 | |
GF-SNV | 0.9785 | 0.1301 | 0.8872 | 0.2129 | |
MSC | 0.9966 | 0.0533 | 0.8269 | 0.2637 |
Treatment | 40 °C | 60 °C | 80 °C | 80 °C | 80 °C | 80 °C | 80 °C | 80 °C | |
---|---|---|---|---|---|---|---|---|---|
Number | 2–4 h | 2–4 h | 2 h | 4 h | 6 h | 8 h | 10 h | 12 h | |
Acacia | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5 | |
Linen | 5 | 5 | 5 | 5 | 5 | 4 | 3 | 3 | |
Longan | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Liu, L.; Li, G.; Li, H.; Ye, D.; Li, X. Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy. Molecules 2019, 24, 1244. https://doi.org/10.3390/molecules24071244
Huang Z, Liu L, Li G, Li H, Ye D, Li X. Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy. Molecules. 2019; 24(7):1244. https://doi.org/10.3390/molecules24071244
Chicago/Turabian StyleHuang, Zhenxiong, Lang Liu, Guojian Li, Hong Li, Dapeng Ye, and Xiaoli Li. 2019. "Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy" Molecules 24, no. 7: 1244. https://doi.org/10.3390/molecules24071244
APA StyleHuang, Z., Liu, L., Li, G., Li, H., Ye, D., & Li, X. (2019). Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy. Molecules, 24(7), 1244. https://doi.org/10.3390/molecules24071244