Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Antiviral Activity
2.2.2. Molecular Docking Study of NQ 4 on DENV-2
2.2.3. Cytotoxicity
3. Materials and Methods
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Samples, Cells and Viruses
3.2.2. Screening for Anti-Herpetic Activity
3.2.3. Simultaneous and Post-Infection Treatment on HHV-1, HHV-2 and DENV-2
3.2.4. Evaluation of Anti-HHV-1 Mechanism of Action in Pre-Infective Stages
3.2.5. Molecular Docking with DENV-2 Prefusion Envelope Protein
3.2.6. Cytotoxicity Assay
3.2.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Subramaniam, A.; Britt, W.J. Herpesviridae infection: Prevention, screening, and management. Clin. Obstet. Gynecol. 2018, 61, 157–176. [Google Scholar] [CrossRef]
- Fatahzadeh, M.; Schwartz, R.A. Human herpes simplex virus infections: Epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol. 2007, 57, 737–763. [Google Scholar] [CrossRef] [PubMed]
- Piret, J.; Boivin, G. Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob. Agents Chemother. 2011, 55, 459–472. [Google Scholar] [CrossRef]
- Turner, L.D.; Beckingsale, P. Acyclovir-resistant herpetic keratitis in a solid-organ transplant recipient on systemic immunosuppression. Clin. Ophthalmol. 2013, 7, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Kaye, S.B.; Hopkins, M.; Kirwan, R.; Hart, I.J.; Coen, D.M. Common and new acyclovir resistant herpes simplex virus-1 mutants causing bilateral recurrent herpetic keratitis in an immunocompetent patient. J. Infect. Dis. 2014, 209, 345–349. [Google Scholar] [CrossRef]
- Cucunawangsih; Lugito, N.P.H. Trends of dengue disease epidemiology. Virology 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Rather, I.A.; Parray, H.A.; Lone, J.B.; Paek, W.K.; Lim, J.; Bajpai, V.K.; Park, Y.H. Prevention and control strategies to counter dengue virus infection. Front. Cell. Infect. Microbiol. 2017, 7, 336. [Google Scholar] [CrossRef]
- Pang, T.; Mak, T.K.; Gubler, D.J. Prevention and control of dengue-the light at the end of the tunnel. Lancet Infect. Dis. 2017, 17, e79–e87. [Google Scholar] [CrossRef]
- Hadinegoro, S.R.; Arredondo-Garcia, J.L.; Capeding, M.R.; Deseda, C.; Chotpitayasunondh, T.; Dietze, R.; Muhammad Ismail, H.I.; Reynales, H.; Limkittikul, K.; Rivera-Medina, D.M.; et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 2015, 373, 1195–1206. [Google Scholar] [CrossRef]
- Fact Sheets by Population. Available online: http://globocan.iarc.fr/Pages/fact_sheets_population.aspx (accessed on 6 November 2018).
- Alonso-Castro, A.J.; Villarreal, M.L.; Salazar-Olivo, L.A.; Gomez-Sanchez, M.; Dominguez, F.; Garcia-Carranca, A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. 2011, 133, 945–972. [Google Scholar] [CrossRef]
- Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res. 2018, 32, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Braga, M.A.; Cesar, P.H.S.; Trento, M.V.C.; Esposito, M.A.; Silva, L.F. Anticancer properties of essential oils: An overview. Curr. Cancer Drug Targets 2018, 18, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Babula, P.; Adam, V.; Havel, L.; Kizek, R. Noteworthy secondary metabolites naphthoquinones–their occurrence, pharmacological properties and analysis. Curr. Pharm. Anal. 2009, 5, 47–68. [Google Scholar] [CrossRef]
- Xiong, H.R.; Luo, J.; Hou, W.; Xiao, H.; Yang, Z.Q. The effect of emodin, an anthraquinone derivative extracted from the roots of Rheum tanguticum, against herpes simplex virus in vitro and in vivo. J. Ethnopharmacol. 2011, 133, 718–723. [Google Scholar] [CrossRef]
- Kaptein, S.J.; De Burghgraeve, T.; Froeyen, M.; Pastorino, B.; Alen, M.M.; Mondotte, J.A.; Herdewijn, P.; Jacobs, M.; de Lamballerie, X.; Schols, D.; et al. A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrob. Agents Chemother. 2010, 54, 5269–5280. [Google Scholar] [CrossRef]
- Li, Y.H.; Lu, Q.N.; Wang, H.Q.; Tao, P.Z.; Jiang, J.D. Geldanamycin, a ligand of heat shock protein 90, inhibits herpes simplex virus type 2 replication both in vitro and in vivo. J. Antibiot. 2012, 65, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Tandon, V.K.; Chhor, R.B.; Singh, R.V.; Rai, S.; Yadav, D.B. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg. Med. Chem. Lett. 2004, 14, 1079–1083. [Google Scholar] [CrossRef]
- Esteves-Souza, A.; Lucio, K.A.; Da Cunha, A.S.; Da Cunha Pinto, A.; Da Silva Lima, E.L.; Camara, C.A.; Vargas, M.D.; Gattass, C.R. Antitumoral activity of new polyamine-naphthoquinone conjugates. Oncol. Rep. 2008, 20, 225–231. [Google Scholar] [CrossRef]
- Castro, M.A.; Gamito, A.M.; Tangarife-Castano, V.; Zapata, B.; Miguel del Corral, J.M.; Mesa-Arango, A.C.; Betancur-Galvis, L.; San Feliciano, A. Synthesis and antifungal activity of terpenyl-1,4-naphthoquinone and 1,4-anthracenedione derivatives. Eur. J. Med. Chem. 2013, 67, 19–27. [Google Scholar] [CrossRef]
- Castro, M.A.; Gamito, A.M.; Tangarife-Castano, V.; Roa-Linares, V.; Miguel del Corral, J.M.; Mesa-Arango, A.C.; Betancur-Galvis, L.; Francesch, A.M.; San Feliciano, A. New 1,4-anthracenedione derivatives with fused heterocyclic rings: Synthesis and biological evaluation. RSC Adv. 2015, 5, 1244–1261. [Google Scholar] [CrossRef]
- Betancur-Galvis, L.A.; Morales, G.E.; Forero, J.E.; Roldan, J. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Mem. Inst. Oswaldo Cruz 2002, 97, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Vlietinck, A.J.; Van Hoof, L.; Totte, J.; Lasure, A.; Vanden Berghe, D.; Rwangabo, P.C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31–47. [Google Scholar] [CrossRef]
- Krummenacher, C.; Carfi, A.; Eisenberg, R.J.; Cohen, G.H. Entry of herpesviruses into cells: The enigma variations. Adv. Exp. Med. Biol. 2013, 790, 178–195. [Google Scholar] [CrossRef]
- Spear, P.G.; Longnecker, R. Herpesvirus entry: An update. J. Virol. 2003, 77, 10179–10185. [Google Scholar] [CrossRef]
- Nicola, A.V.; Straus, S.E. Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J. Virol. 2004, 78, 7508–7517. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, F.; Chen, L.J.; Xiong, H.R.; Liu, Y.Y.; Luo, F.; Hou, W.; Xiao, H.; Yang, Z.Q. In vitro and in vivo studies of the inhibitory effects of emodin isolated from Polygonum cuspidatum on Coxsakievirus B(4). Molecules 2013, 18, 11842–11858. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, E.C.; Amorim, R.; da Silva, F.C.; Rocha, D.R.; Papa, M.P.; de Arruda, L.B.; Mohana-Borges, R.; Ferreira, V.F.; Tanuri, A.; da Costa, L.J.; et al. Synthetic 1,4-pyran naphthoquinones are potent inhibitors of dengue virus replication. PLoS ONE 2013, 8, e82504. [Google Scholar] [CrossRef]
- Yiu, C.Y.; Chen, S.Y.; Yang, T.H.; Chang, C.J.; Yeh, D.B.; Chen, Y.J.; Lin, T.P. Inhibition of Epstein-Barr virus lytic cycle by an ethyl acetate subfraction separated from Polygonum cuspidatum root and its major component, emodin. Molecules 2014, 19, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.M.; Leite, J.P.; Neves, A.P.; da Silva, G.B.; Vargas, M.D.; Paixao, I.C. Synthetic aminomethylnaphthoquinones inhibit the in vitro replication of bovine herpesvirus 5. Arch. Virol. 2014, 159, 1827–1833. [Google Scholar] [CrossRef]
- Alam, Z.; Al-Mahdi, Z.; Zhu, Y.; McKee, Z.; Parris, D.S.; Parikh, H.I.; Kellogg, G.E.; Kuchta, A.; McVoy, M.A. Anti-cytomegalovirus activity of the anthraquinone atanyl blue PRL. Antiviral Res. 2015, 114, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.J.; Lee, R.C.; Ang, M.J.; Wang, W.L.; Lim, H.A.; Wee, J.L.; Joy, J.; Hill, J.; Brian Chia, C.S. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay. Antiviral Res. 2015, 118, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007, 74, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, C.Y.; Ho, T.Y. Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures. Br. J. Pharmacol. 2008, 155, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Battistutta, R.; Sarno, S.; De Moliner, E.; Papinutto, E.; Zanotti, G.; Pinna, L.A. The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J. Biol. Chem. 2000, 275, 29618–29622. [Google Scholar] [CrossRef]
- Sanchez-Duffhues, G.; Calzado, M.A.; de Vinuesa, A.G.; Caballero, F.J.; Ech-Chahad, A.; Appendino, G.; Krohn, K.; Fiebich, B.L.; Munoz, E. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-kappaB-dependent pathway. Biochem. Pharmacol. 2008, 76, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 2003, 100, 6986–6991. [Google Scholar] [CrossRef] [Green Version]
- Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004, 427, 313–319. [Google Scholar] [CrossRef]
- Alves, D.S.; Perez-Fons, L.; Estepa, A.; Micol, V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol. 2004, 68, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Cousins, K.R. ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www. cambridgesoft.com. See Web site for pricing options. J. Am. Chem. Soc. 2005, 127, 4115–4116. [Google Scholar] [CrossRef]
- Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008, 79, 598–601. [Google Scholar] [CrossRef]
- Molinspiration Virtual Screening. Available online: http://www.molinspiration.com/docu/miscreen/virtualscreening.html (accessed on 20 October 2018).
- Organic Chemistry Portal. Available online: https://www.organic-chemistry.org/prog/peo/tox.htmlby (accessed on 20 October 2018).
- Kawiak, A.; Zawacka-Pankau, J.; Wasilewska, A.; Stasilojc, G.; Bigda, J.; Lojkowska, E. Induction of apoptosis in HL-60 cells through the ROS-mediated mitochondrial pathway by ramentaceone from Drosera aliciae. J. Nat. Prod. 2012, 75, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Simamura, E.; Hirai, K.; Shimada, H.; Koyama, J.; Niwa, Y.; Shimizu, S. Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel. Cancer Biol. Ther. 2006, 5, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Gomathinayagam, R.; Sowmyalakshmi, S.; Mardhatillah, F.; Kumar, R.; Akbarsha, M.A.; Damodaran, C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res. 2008, 28, 785–792. [Google Scholar]
- Cai, Y.J.; Lu, J.J.; Zhu, H.; Xie, H.; Huang, M.; Lin, L.P.; Zhang, X.W.; Ding, J. Salvicine triggers DNA double-strand breaks and apoptosis by GSH-depletion-driven H2O2 generation and topoisomerase II inhibition. Free Radic. Biol. Med. 2008, 45, 627–635. [Google Scholar] [CrossRef]
- Hofheinz, R.D.; Beyer, U.; Al-Batran, S.E.; Hartmann, J.T. Mitomycin C in the treatment of gastrointestinal tumours: Recent data and perspectives. Onkologie 2008, 31, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics 2011, 21, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Miguel del Corral, J.M.; Castro, M.A.; Gordaliza, M.; Martin, M.L.; Gualberto, S.A.; Gamito, A.M.; Cuevas, C.; San Feliciano, A. Synthesis and cytotoxicity of new aminoterpenylquinones. Bioorg. Med. Chem. 2005, 13, 631–644. [Google Scholar] [CrossRef]
- Miguel del Corral, J.M.; Castro, M.A.; Oliveira, A.B.; Gualberto, S.A.; Cuevas, C.; San Feliciano, A. New cytotoxic furoquinones obtained from terpenyl-1,4-naphthoquinones and 1,4-anthracenediones. Bioorg. Med. Chem. 2006, 14, 7231–7240. [Google Scholar] [CrossRef] [PubMed]
- Roa-Linares, V.C.; Brand, Y.M.; Agudelo-Gomez, L.S.; Tangarife-Castano, V.; Betancur-Galvis, L.A.; Gallego-Gomez, J.C.; Gonzalez, M.A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79–88. [Google Scholar] [CrossRef]
- Cardozo, F.T.; Camelini, C.M.; Mascarello, A.; Rossi, M.J.; Nunes, R.J.; Barardi, C.R.; de Mendonca, M.M.; Simoes, C.M. Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Res. 2011, 92, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Koebel, M.R.; Schmadeke, G.; Posner, R.G.; Sirimulla, S. AutoDock VinaXB: Implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J. Cheminform. 2016, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
NQ(ratio a/b) | R | R1 | R2 | AQ(ratio a/b) | R1 | R2 |
1 | I | H | H | 10(9:1) | Cl | H |
2(9:1) | I | Cl | H | 11(1:1) | 4-MeO-Ph-NH- | H |
3(1:1) | II | Br | H | 12 | Cl | Cl |
4 | II | Cl | Cl | 13(9:1) | AcNH- | Cl |
5 | II | Br | Br | 14(1:1) | EtNH- | Cl |
6(9:1) | II | Cl | 4-MeO-Ph-NH- | 15(1:1) | 3,4-(Me)2-Ph-NH- | Cl |
7(1:1) | II | Cl | 4-MeO-Ph-O- | 16(1:1) | 4-MeO-Ph-NH- | Cl |
8(9:1) | II | Br | 4-MeO-Ph-NH- | 17(1:1) | 3,4-(MeO)2-Ph-NH- | Cl |
9(9:1) | I | Cl | Ph-CH2-NH- | 18(1:9) | 3,4,5-(MeO)3-Ph-NH- | Cl |
Type | Compound | HHV-1 | HHV-2 | ||
---|---|---|---|---|---|
Rf c | 1 TCID50 a (µg/mL) d | Rf c | 10 TCID50 b (µg/mL) d | ||
NQ | 2 | 102 | 6.25 | 101 | 25 |
3 | nd | >50 | 102 | 6.25 | |
4 | 102 | 6.25 | 102 | 12.5 | |
6 | 102 | 6.25 | nd | >50 | |
7 | 101 | 50 | nd | >50 | |
8 | 102 | 25 | nd | >50 | |
AQ | 10 | 102 | 6.25 | nd | >50 |
12 | nd | >50 | 102 | 25 | |
13 | nd | >50 | 101 | 12.5 | |
15 | 101 | 50 | nd | >50 | |
16 | 101 | 50 | nd | >50 | |
17 | 101 | 50 | nd | >50 | |
18 | 101 | 25 | nd | >50 | |
DS | 102 | 0.5 | nd | ||
A | 104 | 1.5 | 104 | 1.5 |
Type | Compd. | HeLa ATCC CRL-1958 | Jurkat ATCC TIB-152 | Vero ATCC CCL-81 | |||||
---|---|---|---|---|---|---|---|---|---|
IC50 ± SD | r2 | SI | IC50 ± SD | r2 | SI | IC50 ± SD | r2 | ||
NQs | 1 | >104.0 | na | nd | >104.0 | na | na | nd | nd |
2 | 103.8 ± 3.8 | 0.9 | 1 | 6.2 ± 0.2 | 0.8 | 15 | 95.0 ± 2.1 | 0.9 | |
3 | <19.5 | na | >1 | 1.6 ± 0.1 | 0.7 | 8 | 12.8 ± 2.0 | 0.8 | |
4 | 46.6 ± 3.3 | 1.0 | 14 | 36.3 ± 2.0 | 0.9 | 18 | ≥642.7 | na | |
5 | 19.7 ± 0.3 | 1.0 | 1 | 23.5 ± 1.7 | 0.7 | 1 | 15.7 ± 2.7 | 0.8 | |
6 | 34.7 ± 3.2 | 0.8 | 2 | 47.5 ± 0.2 | 1.0 | 1 | >62.8 | na | |
7 | ≤15.7 | na | ≥5 | 12.0 ± 1.8 | 0.8 | 6 | 73.2 ± 0.9 | 0.7 | |
8 | ≤14.1 | na | ≥9 | ≤56.5 | na | ≥2 | 132.2 ± 11.2 | 0.9 | |
9 | 32.6 ± 0.8 | 1.0 | 5 | 14.5 ± 0.5 | 1.0 | 10 | 147.1 ± 9.8 | 0.8 | |
AQs | 10 | 40.0 ± 1.1 | 0.9 | 10 | 48.0 ± 4.7 | 0.8 | 8 | 397.9 ± 6.1 | 0.9 |
11 | 0.010 ± 0.001 | 1.0 | 13967 | 1.4 ± 0.1 | 1.0 | 168 | 231.9 ± 6.9 | 1.0 | |
12 | 38.5 ± 1.2 | 0.9 | 4 | 27.5 ± 0.6 | 0.9 | 5 | 136.5 ± 4.4 | 0.9 | |
13 | >75.3 | na | <1 | 6.3 ± 0.3 | 0.9 | 11 | 67.2 ± 1.3 | 0.7 | |
14 | >78.7 | na | nd | >78.7 | na | na | nd | nd | |
15 | >63.5 | na | <2 | 12.4 ± 0.4 | 1.0 | 10 | >126.9 | na | |
16 | 5.6 ± 0.4 | 0.9 | 32 | 12.4 ± 0.4 | 1.0 | 14 | 179.3 ± 12.9 | 0.7 | |
17 | 7.5 ± 0.6 | 0.9 | 16 | 9.6 ± 0.4 | 0.9 | 12 | 118.6 ± 15.9 | 0.8 | |
18 | ≤13.7 | na | ≥2 | 10.1 ± 0.8 | 0.9 | 2 | 24.3 ± 3.8 | 0.9 | |
HetQs | 19 | 77.0 ± 1.9 | 1.0 | 3 | >72.4 | na | <3 | 212.5 ± 8.6 | 0.7 |
20 | >69.3 | na | <2 | 42.2 ± 0.7 | 0.7 | 4 | 153.1 ± 4.5 | 1.0 | |
21 | >69.9 | na | nd | >69.9 | na | na | nd | nd | |
22 | 73.0 ± 1.6 | 1.0 | 3 | 71.7 ± 1.8 | 1.0 | 3 | 183.1 ± 15.9 | 0.7 | |
23 | 15.5 ± 1.1 | 0.8 | 2 | 13.5 ± 0.7 | 0.9 | 3 | 36.0 ± 1.5 | 0.9 | |
24 | 55.9 ± 2.0 | 0.9 | 5 | 24.3 ± 1.5 | 0.9 | 12 | 282.0 ± 28.2 | 0.5 | |
25 | >70.5 | na | <4 | 13.8 ± 0.4 | 1.0 | 20 | 269.5 ± 5.7 | 1.0 | |
26 | 77.5 ± 3.6 | 0.9 | 2 | 43.6 ± 1.2 | 1.0 | 4 | 182.7 ± 16.3 | 0.7 | |
27 | 57.1 ± 2.2 | 1.0 | 3 | 16.6 ± 0.9 | 0.9 | 12 | 197.3 ± 25.7 | 0.6 | |
Doxorubicin | 0.9 ± 0.1 | 0.9 | 2.2 | 0.10 ± 0.01 | 0.7 | 22 | 2.0±0.1 | 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roa-Linares, V.C.; Miranda-Brand, Y.; Tangarife-Castaño, V.; Ochoa, R.; García, P.A.; Castro, M.Á.; Betancur-Galvis, L.; San Feliciano, A. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules 2019, 24, 1279. https://doi.org/10.3390/molecules24071279
Roa-Linares VC, Miranda-Brand Y, Tangarife-Castaño V, Ochoa R, García PA, Castro MÁ, Betancur-Galvis L, San Feliciano A. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules. 2019; 24(7):1279. https://doi.org/10.3390/molecules24071279
Chicago/Turabian StyleRoa-Linares, Vicky C., Yaneth Miranda-Brand, Verónica Tangarife-Castaño, Rodrigo Ochoa, Pablo A. García, Mª Ángeles Castro, Liliana Betancur-Galvis, and Arturo San Feliciano. 2019. "Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone" Molecules 24, no. 7: 1279. https://doi.org/10.3390/molecules24071279
APA StyleRoa-Linares, V. C., Miranda-Brand, Y., Tangarife-Castaño, V., Ochoa, R., García, P. A., Castro, M. Á., Betancur-Galvis, L., & San Feliciano, A. (2019). Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules, 24(7), 1279. https://doi.org/10.3390/molecules24071279