Synthesis, X-ray Analysis, Biological Evaluation and Molecular Docking Study of New Thiazoline Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. X-ray Analysis
2.3. Biological Evaluation
2.3.1. The In Vitro Antimicrobial Assessment of the Synthesized Thiazolines
2.3.2. Molecular Docking
2.3.3. Antitumor Evaluation of Some Selected Examples of the Synthesized Compounds
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. The Synthetic Procedure for the Target Thiazolines 2a–e
3.1.3. Synthetic Procedure for Substituted 4-Methyl-3-Phenylthiazole-2(3H)-Thione 5a–e
3.1.4. 3,7-Diacetyl-8-methyl-1,9-diphenyl-4,6-dithia-1,2,9-triazaspiro[4.4]nona-2,7-diene (7)
3.2. X-ray Analysis
3.3. Biological Evaluations
3.3.1. The In Vitro Antimicrobial Investigation
3.3.2. In Vitro Cytotoxic Activity
3.4. Molecular Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marson, C.M.; Matthews, C.J.; Yiannaki, E.; Atkinson, S.J.; Soden, P.E.; Shukla, L.; Lamadema, N.; Thomas, N.S. Discovery of potent, isoform-selective inhibitors of histone deacetylase containing chiral heterocyclic capping groups and a N-(2-aminophenyl)benzamide binding unit. J. Med. Chem. 2013, 56, 6156–6174. [Google Scholar] [CrossRef]
- Patil, P.A.; Amnerkar, N.D.; Pathare, S.S.; Bhusari, K.P. Docking study of p-hydroxybenzohydrazide derivatives as tyrosine kinase inhibitors and anticancer agents. J. Comput. Methods Mol. Des. 2015, 5, 109–114. [Google Scholar]
- Wang, W.; Zhao, B.; Xu, C.; Wu, W. Synthesis and antitumor activity of the thiazoline and thiazine multithioether. Int. J. Org. Chem. 2012, 2, 117–120. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Johar, M.; Singh, N.; Dastidar, S.G. Synthesis of biscoupled hemin-thiazoline derivatives and their anticancer activity evaluation. Indian J. Chem. 2004, 43B, 162–167. [Google Scholar] [CrossRef]
- Mahani, N.M.; Sabermahani, F.; Jahani, P.M.; Jalali, N. A density function theory based quantitative structure activity relationships study of thiazoline derivatives as anticancer agents. Iran. J. Anal. Chem. 2015, 2, 70–76. [Google Scholar]
- Taher, A.T.; Khalil, N.A.; Ahmed, E.M. Synthesis of novel isatin-thiazoline and isatin-benzimidazole conjugates as anti-breast cancer agents. Arch. Pharm. Res. 2011, 34, 1615–1621. [Google Scholar] [CrossRef]
- Miller, D.D.; Dalton, J.T.; Gududuru, V.; Hurh, E. Thiazoline analogs as cell proliferation inhibitors. Chem. Abstr. 2005, 143, 326352. [Google Scholar]
- Ng, R.A.; Sui, Z. Preparation of thiazoline derivatives as selective androgen receptor modulators (SARMs). Chem. Abstr. 2005, 142, 74557. [Google Scholar]
- Pine, M.J.; Mirand, E.A.; Ambrus, J.L.; Bock, F.G. Antitumor studies of 2- amino-2-thiazoline and other tumor-modifying agents. J. Med. 1983, 14, 433–449. [Google Scholar] [CrossRef]
- Randazzo, A.; Bifulco, G.; Giannini, C.; Bucci, M.; Debitus, C.; Cirino, G.; Gomez-Paloma, L. Halipeptins A and B: Two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species. J. Am. Chem. Soc. 2001, 123, 10870–10876. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Rani, R.; Gupta, P.P.; Agrawal, S.K.; Saxena, A.K. Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3,4-diaryl-2-imino-4-thiazolines. Mol. Divers. 2009, 13, 357–366. [Google Scholar] [CrossRef]
- Omar, A.M.; Ahmed, I.C.; Hassan, A.M.; AboulWafa, O.M.; Abou-Shleib, H.; Ismail, K.A. Synthesis and evaluation for antibacterial and antifungal activities of new 1-phenylhydrazono-2-(substituted thiocarbamoyl)hydrazonopyruvaldehyde and the corresponding thiazoline and thiazolidinone derivatives. Alex. J. Pharm. Sci. 1990, 4, 182–186. [Google Scholar]
- Shih, M.; Ke, F. Synthesis and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg. Med. Chem. 2004, 12, 4633–4643. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Boltneva, N.P.; Lushchekina, S.V.; Serebryakova, O.G.; Stupina, T.S.; Terentiev, A.A.; Serkov, I.V.; Proshin, A.N.; Bachurin, S.O.; Richardson, R.J. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg. Med. Chem. 2016, 24, 1050–1062. [Google Scholar] [CrossRef]
- Lesyk, R.B.; Zimenkovsky, B.S. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem. 2004, 8, 1547–1577. [Google Scholar] [CrossRef]
- Malik, S.; Upadhyaya, P.K.; Miglani, S. Thiazolidinediones: A plethro of biological load. Int. J. Pharm. Tech. Res. 2011, 3, 62–75. [Google Scholar]
- Fakhari, A.R.; Hosseiny Davarani, S.S.; Ahmar, H.; Makarem, S. Electrochemical study of catechols in the presence of 2-thiazoline-2-thiol: Application to electrochemical synthesis of new 4,5-dihydro-1,3-thiazol-2-ylsulfanyl-1,2-benzenediol derivatives. J. Appl. Electrochem. 2008, 38, 1743–1747. [Google Scholar] [CrossRef]
- Nematollahi, D.; Tammari, E. Electroorganic Synthesis of catecholthioethers. J. Org. Chem. 2005, 70, 7769–7772. [Google Scholar] [CrossRef]
- Laurence, C.; El Ghmari, M.J.; Le Questel, J.Y.; Berthelot, M.; Mokhlisse, R. Structure and molecular interactions of anti-thyroid drugs. Part 3.1 Methimazole: A diiodine sponge. J. Chem. Soc. Perkin Trans. 2 1998, 2, 1545–1551. [Google Scholar]
- Thomes, J.C.; Comby, F.; Lagorce, J.F.; Buxeraud, J.; Raby, C. Sites of action of 2-thiazoline-2-thiol on biogenesis of thyroid hormones. Jpn. J. Pharmacol. 1992, 58, 201–207. [Google Scholar] [CrossRef]
- Almasirad, A.; Nassiri Koopaei, M.; Shafiee, A.; Nassiri, N.; Javad Assarzadeh, M.; Tabei, A.; Ghadim, M. Synthesis of new 1,3-thiazoline-2-thiones as potential antimycobacterial agents. J. Pharm. Health Sci. 2012, 1, 15–20. [Google Scholar]
- Teng, Y.; Wang, X.; Zou, L.; Huang, M.; Du, X. Experimental and theoretical study on the binding of 2-mercaptothiazoline to bovine serum albumin. J. Lumin. 2015, 161, 14–19. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, X.; Shao, M.; Sun, R.; Zhu, Y.; Zou, B.; Huang, Z.; Liu, H.; Teng, Y. A biophysical probe on the binding of 2-mercaptothioazoline to bovine hemoglobin. Environ. Sci. Pollut. Res. Int. 2019, 26, 208–214. [Google Scholar] [CrossRef]
- Gawron, O.; Keil, L. Competitive inhibition of acetylcholinesterase by several thiazolines and oxazolines. Arch. Biochem. Biophys. 1960, 89, 293–295. [Google Scholar] [CrossRef]
- Handrick, G.R.; Atkinson, E.R.; Granchelli, F.E.; Bruni, R.J. Potential antiradiation drugs. II. 2-Amino-1-alkanethiols, 1-amino-2-alkanethiols, 2-thiazolines, and 2-thiazoline-2-thiols. J. Med. Chem. 1965, 8, 762–766. [Google Scholar] [CrossRef]
- Mahal, H.S.; Mukherjee, T. Kinetic and spectroscopic properties of intermediates formed by the reaction of some oxidizing and reducing radicals with 2-mercaptothiazoline (2-MT) in aqueous solutions. Radiat. Phys. Chem. 1999, 54, 29–37. [Google Scholar] [CrossRef]
- Fang, C.L. General Concepts of Additives in the Electroplating Solution; Finishing Science Publication: Taipei, Taiwan, 1996. [Google Scholar]
- Little, L.H.; Ottewill, R.H. Studies on the infrared spectra of a mercaptotriazole and mercaptothiazoline and their adsorption on silver iodide. Can. J. Chem. 1962, 40, 2110–2121. [Google Scholar] [CrossRef]
- Solmaz, R.; Kardas, G.; Culha, M.; Yazici, B.; Erbil, M. Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochim. Acta 2008, 53, 5941–5952. [Google Scholar] [CrossRef]
- Filho, N.L.D.; do Carmo, D.R.; Gessner, F.; Rosa, A.H. Preparation of a clay-modified carbon paste electrode based on 2-thiazoline-2-thiol-hexadecylammonium sorption for sensitive determination of mercury. Anal. Sci. 2005, 21, 1309–1316. [Google Scholar] [CrossRef]
- Eun, J.S.; Kim, K.S.; Kim, H.N.; Park, S.A.; Ma, T.-Z.; Lee, K.A.; Kim, D.K.; Kim, H.K.; Kim, I.S.; Jung, Y.H.; et al. Synthesis of psoralen derivatives and their blocking effect of hKv1.5 channel. Arch. Pharm. Res. 2007, 30, 155–160. [Google Scholar] [CrossRef]
- Mori, M.; Takagi, M.; Noritake, C.; Kagabu, S. 2,4-Dioxo-1, 3-thiazolidine derivatives as a lead for new fungicides. J. Pestic. Sci. 2008, 33, 357–363. [Google Scholar] [CrossRef]
- Sahu, S.K.; Banerjee, M.; Mishra, S.K.; Mohanta, R.K.; Panda, P.K.; Misro, P.K. Synthesis, partition coefficients and antibacterial activity of 3′-phenyl(substituted)-6′-aryl-2′(1H)cis-3′,3′a-dihydrospiro[3-H-indole-3,5′-pyrazolo (3′,4′-d)thiazolo-2-(1H)-ones]. Acta Pol. Pharm. 2007, 64, 121–126. [Google Scholar] [PubMed]
- Dwivedi, C.; Gupta, T.K.; Parmar, S.S. Substituted thiazolidones as anticonvulsants. J. Med. Chem. 1972, 15, 553–554. [Google Scholar] [CrossRef]
- Verma, A.; Saraf, S.K. 4-Thiazolidinone—A biologically active scaffold. Eur. J. Med. Chem. 2008, 43, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Nabih, I.; El-Hawary, F.; Zoorob, H. Structure and activity of thiazole-type schistosomicidal agents. J. Pharm. Sci. 1972, 61, 1327–1328. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.A.; Paulson, G.D.; Feil, V.J. The effect of nitrite on 14C-sulphathiazole (4-amino-N-2-thiazolyl[U-14C]benzenesulphonamide) metabolism in the rat. Xenobiotica 1987, 17, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Toplak, R.B.; Rocherulle, P.; Lorcy, D. Unexpected reaction of dimethoxycarbonyl dithiole-2-thione or tetramethoxycarbonyl TTF as dipolarophiles. Tetrahedron Lett. 2002, 43, 3879–3882. [Google Scholar] [CrossRef]
- Humphlett, W.J.; Lamon, R.W. 4-Thiazoline-2-thiones. I. The Structure of intermediate 4-hydoxythiazolidine-2-thiones. J. Org. Chem. 1964, 29, 2146–2148. [Google Scholar]
- Humphlett, W.J.; Lamon, R.W. 4-Thiazoline-2-thiones. II. Preparation of 4-alkylsulfonylmethyl derivatives. J. Org. Chem. 1964, 29, 2148–2150. [Google Scholar] [CrossRef]
- Lamon, R.W.; Humphlett, W.J. 4-Thiazoline-2-thiones. IV. Preparation from amino acids. J. Heterocycl. Chem. 1967, 4, 605–609. [Google Scholar] [CrossRef]
- Dunn, A.D.; Rudorf, W. Carbon Disulphide in Organic Chemistry; Wiley: New York, NY, USA, 1989; pp. 226–315. [Google Scholar]
- Ze-Mei, G.; Qin, L.; Shao-Jun, Z.; Tie-Ming, C.; Yu-Xin, C.; Run-Tao, L. Facile One-pot Synthesis of Ethyl 3-Alkyl-4-hydroxy-2-thioxothiazolidine-4-carboxylates. Chin. J. Chem. 2006, 24, 381–385. [Google Scholar]
- Arab-Salmanabadi, S. Synthesis and spectral characterization of novel bis-thiazole derivatives via ring closure of benzo[d]thiazol-2-amine, various α-haloketones, and S-nucleophiles. J. Heterocycl. Chem. 2017, 54, 3600–3606. [Google Scholar] [CrossRef]
- Yavari, I.; Sirouspour, M.; Souri, S. A one-pot synthesis of N-alkylthiazoline-2-thiones from CS2, primary amines, and 2-chloro-1,3-dicarbonyl compounds in water. Monatsh. Chem. 2010, 141, 49–52. [Google Scholar] [CrossRef]
- Iravani, N.; Karami, B.; Asadimoghaddam, F.; Monfared, M. Solvent free synthesis of 1-[3-alkyl-4-methy-2-thioxo-2,3-dihydrothiazole-5-yl]-ethanone in a multicomponent reaction. J. Sulfur Chem. 2012, 33, 279–284. [Google Scholar] [CrossRef]
- Janikowska, K.; Makowiec, S. Simple Method for the Preparation of Dialkyl (2,3-Dihydro-1,3-thiazol-2-YL)-phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 12–20. [Google Scholar] [CrossRef]
- D’xmico, J.J. Thiazolethiols and their Derivatives. J. Am. Chem. Soc. 1953, 75, 102–104. [Google Scholar] [CrossRef]
- Dieckmann, W.; Platz, L. Ueber eine neue bildungsweise von osotetrazonen. Ber. Dtsch. Chem. Ges. 1905, 38, 2986–2990. [Google Scholar] [CrossRef]
- Abushamleh, A.S.; Al-Aqarbeh, M.M.; Day, V. Transition metal complexes of derivatized chiral dihydro-1,2,4-triazin-6-ones. Template synthesis of nickel (II) tetraaza-(4N-M) complexes incorporating the triazinone moiety. Am. J. Appl. Sci. 2008, 5, 750–754. [Google Scholar] [CrossRef]
- Budarina, E.V.; Dolgushina, T.S.; Petrov, M.I.; Labelish, N.N.; Kol’tsov, A.A.; Bel’skii, V.K. Heterocyclic thiones and their analogs in 1,3-dipolar cycloaddition: VII, reactions of 4-methy-1,3-thiazole-2(3H)-thiones with nitrile imines. Russ. J. Org. Chem. 2007, 43, 1516–1525. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkins Trans. 1987, 2, 1–19. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.A.; Safwat, N.A.; Elaasser, M.M.; Soliman, A.M. Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl)thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 2016, 124, 299–310. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE), 2014.09; Chemical Computing Group Inc.: Montreal, QC, Canada, 2015.
Sample Availability: Samples of the thiazoline derivatives are available from the authors. |
Crystal Data | |
Chemical formula | C18H17N3S2 |
Mr | 339.46 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 293 |
a, b, c (Å) | 9.2105 (4), 7.4969 (3), 12.9869 (5) |
β (°) | 109.440 (2) |
V (Å3) | 845.62 (6) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.86 |
Crystal size (mm) | 0.42 × 0.35 × 0.32 |
Data Collection | |
Diffractometer | Bruker APEX-II D8 venture diffractometer |
Absorption correction | Multi-scan SADABS Bruker 2014 |
Tmin, Tmax | 0.884, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8683, 3089, 2993 |
Rint | 0.039 |
Refinement | |
R[F2 > 2σ( F2)], wR( F2), S | 0.030, 0.075, 1.07 |
No. of reflections | 3089 |
No. of parameters | 214 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.32 |
Absolute structure | Flack x determined using 1376 quotients [(I+) − (I)]/ [(I+) + (I−)] |
Flack parameter | 0.031 (9) |
S1—C1 | 1.722 (3) | N1—C4 | 1.447 (4) |
S1—C2 | 1.748 (3) | N2—N3 | 1.363 (4) |
S2—C1 | 1.668 (3) | N2—C11 | 1.289 (4) |
N1—C1 | 1.363 (4) | N3—C13 | 1.390 (4) |
N1—C3 | 1.413 (4) | ||
C1—S1—C2 | 92.77 (14) | S1—C2—C11 | 116.7 (2) |
C1—N1—C3 | 115.5 (2) | N1—C3—C2 | 112.2 (3) |
C1—N1—C4 | 121.2 (3) | N1—C3—C10 | 118.1 (3) |
C3—N1—C4 | 123.3 (2) | N1—C4—C5 | 118.0 (3) |
N3—N2—C11 | 119.6 (3) | N1—C4—C9 | 120.2 (2) |
N2—N3—C13 | 118.4 (3) | N2—C11—C2 | 112.3 (3) |
S1—C1—N1 | 109.1 (2) | N2—C11—C12 | 125.7 (3) |
S2—C1—N1 | 127.2 (2) | N3—C13—C14 | 118.1 (3) |
S1—C1—S2 | 123.69 (17) | N3—C13—C18 | 122.5 (3) |
S1—C2—C3 | 110.4 (2) |
D—H···A | D···A | D—H···A |
---|---|---|
N3—H1···S2i | 3.579 (3) | 144 (3) |
Symmetry codes: (i) x − 1, −y + 1, z − 1/2. |
Sample | Microorganisms | |||||
---|---|---|---|---|---|---|
Fungi | Gram Positive Bacteria | Gram Negative Bacteria | ||||
AF | CA | SA | BS | SSP | EC | |
2b | NA | NA | NA | NA | 11 | 8 |
2c | 14 | 13 | 15 | 12 | 15 | 14 |
2d | 10 | 13 | 13 | 10 | 13 | 14 |
2e | 15 | 15 | 13 | 14 | 13 | 17 |
5a | NA | 13 | 9 | 9 | 13 | 12 |
5b | NA | 13 | 9 | 10 | 14 | 16 |
5c | NA | 12 | 9 | 9 | 12 | 10 |
5d | 13 | 17 | 13 | 12 | 14 | 13 |
5e | NA | 14 | 8 | 9 | 13 | 9 |
Amphotericin B | 23 | 25 | - | - | - | - |
Ampicillin | 23 | 32 | - | - | ||
Gentamycin | - | - | - | - | 17 | 19 |
Sample Number | Sample Concentration (μg/mL) Viability % | IC50 (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
500 | 250 | 125 | 62.5 | 31.25 | 15.6 | 7.8 | 3.9 | 0 | ||
Doxorubicin (standard) | 2.08 | 3.36 | 4.86 | 6.51 | 11.04 | 19.38 | 24.82 | 28.86 | 100 | 0.36 |
2c | 9.56 | 14.65 | 28.72 | 36.93 | 46.80 | 61.78 | 76.09 | 81.43 | 100 | 27.9 |
2d | 14.96 | 25.37 | 35.18 | 46.85 | 62.34 | 76.82 | 84.17 | 90.64 | 100 | 56.1 |
5a | 17.39 | 35.26 | 46.87 | 62.34 | 79.15 | 87.29 | 94.12 | 97.34 | 100 | 112 |
5b | 5.72 | 12.46 | 21.79 | 30.69 | 35.28 | 41.63 | 48.76 | 62.81 | 100 | 7.46 |
5d | 10.67 | 24.16 | 36.25 | 48.32 | 61.74 | 76.98 | 85.04 | 92.36 | 100 | 58.6 |
Sample Number | Sample Concentration (μg/mL) Viability % | IC50 (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
500 | 250 | 125 | 62.5 | 31.25 | 15.6 | 7.8 | 3.9 | 0 | ||
Doxorubicin (standard) | 2.08 | 3.36 | 4.86 | 6.51 | 11.04 | 19.38 | 24.82 | 28.86 | 100 | 0.49 |
2c | 16.72 | 25.46 | 33.95 | 40.67 | 46.98 | 69.41 | 84.02 | 92.37 | 100 | 29.1 |
2d | 21.53 | 32.68 | 40.97 | 56.13 | 71.84 | 86.25 | 93.89 | 97.04 | 100 | 87.8 |
5b | 8.94 | 15.36 | 23.21 | 31.05 | 38.92 | 45.18 | 57.85 | 71.06 | 100 | 12.6 |
5d | 17.85 | 32.64 | 45.72 | 57.18 | 72.34 | 87.29 | 94.12 | 97.65 | 100 | 102 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabkhot, Y.N.; Algarni, H.; Alsayari, A.; Bin Muhsinah, A.; Kheder, N.A.; Almarhoon, Z.M.; Al-aizari, F.A. Synthesis, X-ray Analysis, Biological Evaluation and Molecular Docking Study of New Thiazoline Derivatives. Molecules 2019, 24, 1654. https://doi.org/10.3390/molecules24091654
Mabkhot YN, Algarni H, Alsayari A, Bin Muhsinah A, Kheder NA, Almarhoon ZM, Al-aizari FA. Synthesis, X-ray Analysis, Biological Evaluation and Molecular Docking Study of New Thiazoline Derivatives. Molecules. 2019; 24(9):1654. https://doi.org/10.3390/molecules24091654
Chicago/Turabian StyleMabkhot, Yahia N., H. Algarni, Abdulrhman Alsayari, Abdullatif Bin Muhsinah, Nabila A. Kheder, Zainab M. Almarhoon, and Faiz A. Al-aizari. 2019. "Synthesis, X-ray Analysis, Biological Evaluation and Molecular Docking Study of New Thiazoline Derivatives" Molecules 24, no. 9: 1654. https://doi.org/10.3390/molecules24091654
APA StyleMabkhot, Y. N., Algarni, H., Alsayari, A., Bin Muhsinah, A., Kheder, N. A., Almarhoon, Z. M., & Al-aizari, F. A. (2019). Synthesis, X-ray Analysis, Biological Evaluation and Molecular Docking Study of New Thiazoline Derivatives. Molecules, 24(9), 1654. https://doi.org/10.3390/molecules24091654