Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Extraction and Isolation
3.4. X-ray Crystallographic Analysis of 1
3.5. Cytotoxic Evaluation (MTT Assay)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Winssinger, N.; Barluenga, S. Chemistry and biology of resorcylic acid lactones. Chem. Commun. 2007, 1, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R. ChemInform Abstract: A Biosynthetic Classification of Fungal and Streptomycete Fused-Ring Aromatic Polyketides. Chem. Biol. Chem. 2001, 2, 612–627. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, T.; Zhou, Z.; Su, S.; Roberts, S.A.; Montfort, W.R.; Zeng, J.; Chen, M.; Zhang, W.; Zhan, J.; et al. Rational reprogramming of fungal polyketide first-ring cyclization. Proc. Natl. Acad. Sci. USA 2013, 110, 5398–5403. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Mao, H.; Huang, Q.; Dong, J. Benzenediol lactones: A class of fungal metabolites with diverse structural features and biological activitie. Eur. J. Med. Chem. 2015, 97, 747–777. [Google Scholar] [CrossRef] [PubMed]
- Winssinger, N.; Fontaine, J.G.; Barluenga, S. Hsp90 Inhibition with Resorcylic Acid Lactones (RALs). Curr. Top. Med. Chem. 2009, 9, 1419–1435. [Google Scholar] [CrossRef] [PubMed]
- Ayers, S.; Graf, T.N.; Adcock, A.F.; Kroll, D.J.; Matthew, S.; Carcache de Blanco, E.J.; Shen, Q.; Swanson, S.M.; Wani, M.C.; Pearce, C.J.; et al. Resorcylic Acid Lactones with Cytotoxic and NF-κB Inhibitory Activities and Their Structure–Activity Relationships. J. Nat. Prod. 2011, 74, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, N.; Akinaga, S.; Agatsuma, T. International Patent 2004. No. WO 2004/024141, 25 March 2004. [Google Scholar]
- Ninomiya-Tsuji, J.; Kajino, T.; Ono, K.; Ohtomo, T.; Matsumoto, M.; Shiina, M.; Mihara, M.; Tsuchiya, M.; Kunihiro, M. A Resorcylic Acid Lactone, 5Z-7-Oxozeaenol, Prevents Inflammation by Inhibiting the Catalytic Activity of TAK1 MAPK Kinase Kinase. J. Biol. Chem. 2003, 278, 18485–18490. [Google Scholar] [CrossRef]
- Tan, X.M.; Chen, A.J.; Wu, B.; Zhang, G.S.; Ding, G. Advance of swainsonine biosynthesis. Chin. Chem. Lett. 2018, 29, 417–422. [Google Scholar] [CrossRef]
- Li, L.Y.; Sun, B.D.; Zhang, G.S.; Deng, H.; Wang, M.H.; Tan, X.M.; Zhang, X.Y.; Jia, H.M.; Zhang, T.; Zou, Z.M.; et al. Polyketides with different post-modifications from desert endophytic fungus Paraphoma sp. Nat. Prod. Res. 2017, 32, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Zhang, X.Y.; Sun, B.D.; Deng, H.; Zou, Z.M.; Ding, G. Phenolic acid analogs from the endophytic fungus Embellisia chlamydospora isolated from desert medicinal plant Artemisia desertorum. Mycosystema 2018, 37, 88–94. [Google Scholar]
- Li, L.Y.; Song, B.; Chen, A.J.; Sun, B.D.; Zhang, G.S.; Deng, H.; Ding, G. Advance on secondary metabolites of grassland and desert plants endophytic fungi. Microbiol. China 2018, 45, 1146–1160. [Google Scholar]
- Zhang, X.Y.; Liu, Z.L.; Sun, B.D.; Niu, S.N.; Wang, M.H.; Tan, X.M.; Zou, Z.M.; Ding, G. Bioactive resorcylic acid lactones with different ring systems from desert plant endophytic fungus Chaetosphaeronema hispidulum. J. Agric. Food Chem. 2018, 66, 8976–8982. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.M.; Li, L.Y.; Sun, L.Y.; Sun, B.D.; Niu, S.B.; Wang, M.H.; Zhang, X.Y.; Sun, W.S.; Zhang, G.S.; Deng, H.; et al. Spiciferone analogs from an endophytic fungus Phoma betae collected from desert plants in West China. J. Antibiot. 2018, 71, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Li, L.Y.; Shang, H.; Liu, Y.; Yu, M.; Ding, G.; Zou, Z.M. Trematosphones A and B, Two Unique Dimeric Structures from the Desert Plant Endophytic Fungus Trematosphaeria terricola. Org. Lett. 2019, 21, 2139–2142. [Google Scholar] [CrossRef] [PubMed]
- El-Elimat, T.; Raja, H.A.; Day, C.S.; Chen, W.; Swanson, S.M.; Oberlies, N.H. Greensporones: Resorcylic Acid Lactones from an Aquatic Halenospora sp. J. Nat. Prod. 2014, 77, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Ikuko, O.; Takenori, K.; Yoel, K.; Hiroshi, K. High-Field FT NMR Application of Mosher’s Method. The Absolute Configurations of Marine Terpenoids. J. Am. Chem. Soc. 1991, 113, 4092–4096. [Google Scholar]
- Zhou, H.; Qiao, K.J.; Gao, Z.Z.; Vederas, J.C.; Tang, Y. Insights into Radicicol Biosynthesis via Heterologous Synthesis of Intermediates and Analogs. J. Biol. Chem. 2010, 285, 41412–41421. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Niu, S.B.; Li, L.; Ding, G.; Yu, M.; Zhang, G.S.; Wang, M.H.; Li, L.Y.; Zhang, T.; Jia, H.M.; et al. Trichoderpyrone, a Unique Polyketide Hybrid with a Cyclopentenone–Pyrone Skeleton from the Plant Endophytic Fungus Trichoderma gamsii. J. Nat. Prod. 2017, 80, 1944–1947. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds (1–7) are available from the authors. |
No. | 1 | 2 | 4 | 5 | 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
δHa | δCb | δHa | δCb | δHa | δCb | δHa | δCb | δHa | δCb | |
1 | 1.27, d (7.2) | 19.6 | 1.28, d (7.8) | 19.6 | 1.28, d (7.8) | 19.5 | 1.27, d (7.2) | 20.6 | 1.29, d (7.2) | 19.5 |
2 | 5.17, m | 70.4 | 5.20, m | 72.0 | 5.12, m | 70.9 | 4.90, m | 71.4 | 5.16, m | 70.9 |
3 | 1.60, m | 34.7 | 1.48, m | 30.8 | 2.16, m | 27.9 | 1.50, m | 29.5 | 2.21, m | 27.9 |
1.60, m | 1.28, m | 1.60, m | 1.50, m | 1.58, m | ||||||
4 | 1.33, m | 22.1 | 1.51, m | 31.6 | 2.62, m | 37.3 | 2.64, ddd (18.5, 10.0, 4.0) | 35.2 | 2.66, m | 35.4 |
1.33, m | 1.28, m | 2.37, m | 2.16, ddd (18.5, 5.0, 5.0) | 2.38, m | ||||||
5 | 1.36, m | 25.7 | 3.45, m | 70.3 | 209.7 | 209.6 | 209.6 | |||
1.36, m | ||||||||||
6 | 1.34, m | 24.9 | 1.64, m | 34.6 | 2.64, m | 35.2 | 2.43, ddd (15.0, 7.5, 3.5) | 40.6 | 2.55, m | 36.7 |
1.34, m | 1.29, m | 2.64, m | 2.24, ddd (15.0, 11.5, 3.5) | 2.34, m | ||||||
7 | 1.70, m | 22.7 | 1.40, m | 22.4 | 1.87, m | 30.2 | 2.09, m | 21.3 | 1.89, m | 26.6 |
1.50, m | 1.40, m | 1.87, m | 1.76, m | 1.89, m | ||||||
8 | 1.70, m | 25.9 | 1.41, m | 22.8 | 3.82, m | 65.6 | 3.56, m | 79.1 | 3.37, m | 75.3 |
1.52, m | 1.17, m | |||||||||
8-OMe | 3.27 s | 57.1 | 3.27 s | 55.5 | ||||||
9 | 2.71, ddd (14.5, 9.5, 3.0) | 40.5 | 2.79, ddd (17.0, 7.5, 3.0) | 39.5 | 2.63, dd (14.0, 3.5) | 48.8 | 3.00, dd (14.5, 8.0) | 45.5 | 2.68, dd (14.5, 3.5) | 45.2 |
2.30, ddd (14.5, 9.0, 3.0) | 2.46, ddd (17.0, 10.5, 3.5) | 2.33, dd (14.0, 9.5) | 2.52, dd (14.5, 1.5) | 2.21, dd (14.5, 9.0) | ||||||
10 | 204.4 | 204.1 | 203.9 | 205.0 | 203.4 | |||||
11 | 4.13, d (18.5) | 44.1 | 4.03, d (18.5) | 44.5 | 4.10, d (18.0) | 45.3 | 4.07, d (18.5) | 46.8 | 4.12, d (17.5) | 44.9 |
3.97, d (18.5) | 3.97, d (18.5) | 3.89, d (18.0) | 4.01, d (18.5) | 3.89, d (17.5) | ||||||
12 | 132.6 | 132.3 | 132.4 | 133.2 | 132.4 | |||||
13 | 113.7 | 113.5 | 113.5 | 114.8 | 113.4 | |||||
14 | 154.9 | 154.6 | 155.3 | 156.8 | 155.2 | |||||
15 | 6.68, s | 99.3 | 6.68, s | 99.2 | 6.71, s | 99.5 | 6.67, s | 100.5 | 6.69, s | 99.5 |
16 | 156.4 | 156.1 | 156.6 | 157.3 | 156.7 | |||||
17 | 117.9 | 118.6 | 117.8 | 118.6 | 117.9 | |||||
18 | 167.0 | 166.7 | 167.0 | 168.2 | 167.0 | |||||
16-OMe | 3.77, s | 55.5 | 3.79, s | 55.6 | 3.78, s | 55.6 | 3.74, s | 56.5 | 3.78, s | 55.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, X.; Tan, X.; Sun, B.; Wu, B.; Yu, M.; Zhang, T.; Zhang, Y.; Ding, G. Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis. Molecules 2019, 24, 1405. https://doi.org/10.3390/molecules24071405
Li L, Zhang X, Tan X, Sun B, Wu B, Yu M, Zhang T, Zhang Y, Ding G. Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis. Molecules. 2019; 24(7):1405. https://doi.org/10.3390/molecules24071405
Chicago/Turabian StyleLi, Luying, Xiaoyan Zhang, Xiangmei Tan, Bingda Sun, Bin Wu, Meng Yu, Tao Zhang, Yonggang Zhang, and Gang Ding. 2019. "Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis" Molecules 24, no. 7: 1405. https://doi.org/10.3390/molecules24071405
APA StyleLi, L., Zhang, X., Tan, X., Sun, B., Wu, B., Yu, M., Zhang, T., Zhang, Y., & Ding, G. (2019). Rhinoclactones A-E, Resorcylic Acid Analogs from Desert Plant Endophytic Fungus Rhinocladiella similis. Molecules, 24(7), 1405. https://doi.org/10.3390/molecules24071405