Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of RO-EP Treatment and Alcohol Re-Adjustment on Basic Wine Composition
2.2. Effect of RO-EP Treatment and Alcohol Re-adjustment on Wine Fermentation Volatiles
2.3. Basic Composition of Samples Collected during RO-EP Treatment of Wine
2.4. Concentration of Fermentation Volatiles in Samples Collected during RO-EP Treatment of Wine
3. Materials and Methods
3.1. Chemicals
3.2. Wine Samples
3.3. Basic Wine Analysis
3.4. Gas Chromatography-Mass Spectrometry Analyis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickering, G.J. Low- and reduced-alcohol wine: A review. J. Wine Res. 2000, 11, 129–144. [Google Scholar] [CrossRef]
- Godden, P.; Muhlack, R. Trends in the composition of Australian wine. Aust. N. Z. Grapegr. Winemaker 2010, 558, 47–61. [Google Scholar]
- Rayess, Y.E.; Mietton-Peuchot, M. Membrane technologies in wine industry: An overview. Crit. Rev. Food Sci. Nutr. 2016, 56, 2005–2020. [Google Scholar] [CrossRef]
- Zamora, F. Dealcoholised wines and low-alcohol wines. In Wine Safety, Consumer Preference, and Human Health; Moreno-Arribas, M., Bartolomé Suáldea, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 163–182. [Google Scholar]
- Schmidtke, L.M.; Blackman, J.W.; Agboola, S.O. Production technologies for reduced alcoholic wines. J. Food Sci. 2012, 77, R25–R41. [Google Scholar] [CrossRef] [PubMed]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Harvesting and blending options for lower alcohol wines: A sensory and chemical investigation. J. Sci. Food Agric. 2017, 98, 33–42. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Šuklje, K.; Boss, P.K.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties. Food Chem. 2018, 259, 196–206. [Google Scholar] [CrossRef]
- Hranilovic, A.; Li, S.; Boss, P.K.; Bindon, K.; Ristic, R.; Grbin, P.R.; Van der Westhuizen, T.; Jiranek, V. Chemical and sensory profiling of Shiraz wines co-fermented with commercial non-Saccharomyces inocula. Aust. J. Grape Wine Res. 2018, 24, 166–180. [Google Scholar] [CrossRef]
- Takács, L.; Vatai, G.; Korány, K. Production of alcohol free wine by pervaporation. J. Food Eng. 2007, 78, 118–125. [Google Scholar] [CrossRef]
- Smith, C.R. Apparatus and Method for Removing Compounds from a Solution. U.S. Patent 5480665, 2 January 1996. [Google Scholar]
- Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marín-Iniesta, F.; López-Gómez, A. Dealcoholized wines by spinning cone column distillation: Phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. J. Agric. Food Chem. 2009, 57, 6770–6778. [Google Scholar] [CrossRef] [PubMed]
- Wollan, D. Alcohol Reduction in Beverages. U.S. Patent 20080272041, 6 November 2008. [Google Scholar]
- Saha, B.; Torley, P.; Blackmann, J.W.; Schmidtke, L.M. Review of processing technology to reduce alcohol levels in wines. In Proceedings of the 1st Oenoviti International Symposium—Alcohol Level Reduction in Wine, Bordeaux, France, 6 September 2013; VIGNE et vin Publications Internationales: Bordeaux, France, 2013; pp. 78–86. [Google Scholar]
- Bui, K.; Dick, R.; Moulin, G.; Galzy, P. A reverse osmosis for the production of low ethanol content wine. Am. J. Enol. Vitic. 1986, 37, 297–300. [Google Scholar]
- Diban, N.; Athes, V.; Bes, M.; Souchon, I. Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor. J. Memb. Sci. 2008, 311, 136–146. [Google Scholar] [CrossRef]
- Massot, A.; Mietton-Peuchot, M.; Peuchot, C.; Milisic, V. Nanofiltration and reverse osmosis in winemaking. Desalination 2008, 231, 283–289. [Google Scholar] [CrossRef]
- Pickering, G.J.; Heatherbell, D.; Vanhanen, L.; Barnes, M. The effect of ethanol concentration on the temporal perception of viscosity and density in white wine. Am. J. Enol. Vitic. 1998, 49, 306–318. [Google Scholar]
- Gambuti, A.; Rinaldi, A.; Lisanti, M.T.; Pessina, R.; Moio, L. Partial dealcoholisation of red wines by membrane contactor technique: Influence on colour, phenolic compounds and salive precipitation index. Eur. Food Res. Technol. 2011, 233, 647–655. [Google Scholar] [CrossRef]
- Meillon, S.; Urbano, C.; Schlich, P. Contribution of the temporal dominance of sensations (TDS) method to the sensory description of subtle differences in partially dealcoholized red wines. Food Qual. Pref. 2009, 20, 490–499. [Google Scholar] [CrossRef]
- Gonzalez-Manzano, S.; Dueñas, M.; Rivasgonzalo, J.; Escribano-Bailón, M.; Santos-Buelga, C. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chem. 2009, 114, 649–656. [Google Scholar] [CrossRef]
- Gonçalves, F.; Ribeiro, R.; Neves, L.; Lemperle, T.; Lança, M.; Ricardo da Silva, J.; Laureano, O. Alcohol reduction in wine by nanofiltration. Some comparisons with reverse osmosis technique. In Proceedings of the 1st Oenoviti International Symposium—Alcohol Level Reduction in Wine, Bordeaux, France, 6 September 2013; VIGNE et vin Publications Internationales: Bordeaux, France, 2013; pp. 64–67. [Google Scholar]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Somers, T.C.; Evans, M.E. Grape pigment phenomena: Interpretation of major colour losses during vinification. J. Sci. Food Agric. 1979, 30, 623–633. [Google Scholar] [CrossRef]
- Villamor, R.R.; Ross, C.F. Wine matrix compounds affect perception of wine aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef]
- Ramey, D.D.; Ough, C.S. Volatile ester hydrolysis or formation during storage of model solutions and wines. J. Agric. Food Chem. 1980, 28, 928–934. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. Hydrolysis and formation of volatile esters in New Zealand Sauvignon blanc wine. Food Chem. 2012, 135, 486–493. [Google Scholar] [CrossRef]
- Euranto, E.K. Esterification and ester hydrolysis. In Carboxylic Acids and Esters (1969); John Wiley & Sons Ltd.: Chicester, UK, 1969; pp. 505–588. [Google Scholar]
- Fan, Y.; Xie, Z.; Zhang, H.; Qian, J. Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. Kinet. Catal. 2011, 52, 686–690. [Google Scholar] [CrossRef]
- Marais, J. The effect of pH on esters and quality of Colombard wine during maturation. Vitis 1978, 17, 396–403. [Google Scholar]
- Edwards, T.L.; Singleton, V.L.; Boulton, R. Formation of ethyl esters of tartaric acid during wine aging: Chemical and sensory effects. Am. J. Enol. Vitic. 1985, 36, 118–124. [Google Scholar]
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Partial dealcoholization of red wines by membrane contactor technique: Effect on sensory characteristics and volatile composition. Food Bioprocess Technol. 2013, 6, 2289–2305. [Google Scholar] [CrossRef]
- Saha, B.; Longo, R.; Torley, P.; Saliba, A.; Schmidtke, L. SPME method optimized by Box-Behnken design for impact odorants in reduced alcohol wines. Foods 2018, 7, 127. [Google Scholar] [CrossRef]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Rolle, L.; Englezos, V.; Torchio, F.; Cravero, F.; Río Segade, S.; Rantsiou, K.; Giacosa, S.; Gambuti, A.; Gerbi, V.; Cocolin, L. Alcohol reduction in red wines by technological and microbiological approaches: A comparative study. Aust. J. Grape Wine Res. 2017, 24, 62–74. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in volatile composition and sensory attributes of wines during alcohol content reduction. J. Sci. Food Agric. 2016, 97, 8–16. [Google Scholar] [CrossRef]
- Siebert, T.E.; Smyth, H.E.; Capone, D.L.; Neuwohner, C.; Pardon, K.H.; Skouroumounis, G.K.; Herderich, M.J.; Sefton, M.A.; Pollnitz, A.P. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS. Anal. Bioanal. Chem. 2005, 381, 937–947. [Google Scholar] [CrossRef]
- Frayne, R.F. Direct analysis of the major organic components in grape must and wine using high performance liquid chromatography. Am. J. Enol. Vitic. 1986, 37, 281–287. [Google Scholar]
- Goldner, M.C.; Zamora, M.C. Effect of polyphenol concentrations on astringency perception and its correlation with gelatin index of red wine. J. Sens. Stud. 2010, 25, 761–777. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Wine A | Wine B | Wine C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-RO-EP | Post-RO-EP | Post-EtOH | P | Pre-RO-EP | Post-RO-EP | Post-EtOH | P | Pre-RO-EP | Post-RO-EP | Post-EtOH | P | |||
alcohol (% abv) | 14.1a | 12.5b | 14.1a | <0.001 | 17.1a | 14.5b | 17.1a | <0.001 | 14.9a | 14.2b | 14.9a | <0.001 | ||
free SO2 (mg/L) | 3.8 | nd | nd | – | 6.4 | nd | nd | – | 7.7 | 1.9 | 1.9 | – | ||
density (g/mL) | 0.995 | 0.995 | 0.993 | – | 0.993 | 0.996 | 0.993 | – | 0.993 | 0.994 | 0.993 | – | ||
viscosity (mPa s) | 1836a | 1711c | 1796b | <0.001 | 2009a | 1829c | 1982b | <0.001 | 1858a | 1751c | 1836b | <0.001 | ||
glycerol (g/L) | 10.2a | 10.2a | 10.0b | <0.001 | 10.9b | 11.0a | 10.7c | <0.001 | 11.9a | 11.8a | 11.6b | 0.039 | ||
gelatin index (%) | 38c | 55a | 46 b | <0.001 | 49 | 54 | 48 | – | 44a | 44a | 41b | 0.040 | ||
pH | 3.7 | 3.6 | 3.7 | – | 3.6 | 3.6 | 3.6 | – | 3.7 | 3.7 | 3.7 | – | ||
TA (g/L) | 5.9 | 6.1 | 5.9 | – | 7.2 | 7.1 | 7.2 | – | 6.4 | 6.5 | 6.4 | – | ||
VA (g/L) | 0.4 | 0.3 | 0.4 | – | 0.5 | 0.8 | 0.5 | – | 0.6 | 0.6 | 0.6 | – | ||
citric acid (g/L) | 1.2 | 1.2 | 1.1 | – | 0.7 | 0.7 | 0.7 | – | 0.9 | 0.9 | 0.8 | – | ||
succinic acid (g/L) | 6.2 | 6.2 | 6.1 | – | 8.2 | 8.3 | 8.3 | – | 6.5 | 6.5 | 6.4 | – | ||
lactic acid (g/L) | 3.7 | 3.8 | 3.7 | – | 2.8 | 2.8 | 2.8 | – | 3.8 | 3.8 | 3.7 | – | ||
wine color (au) | 10.8c | 12.6a | 12.2b | <0.001 | 19.6b | 21.0a | 18.8c | <0.001 | 17.2 | 17.3 | 17.1 | – | ||
wine hue | 2.8c | 4.9a | 3.8b | <0.001 | 4.1b | 4.2a | 3.9c | <0.001 | 3.4b | 3.6a | 3.4b | <0.001 | ||
L* | 67.6a | 62.7c | 64.0b | <0.001 | 49.7a | 47.5b | 49.8a | <0.001 | 52.9b | 53.1a | 52.7c | 0.003 | ||
a* | 34.7c | 36.8a | 36.1b | <0.001 | 50.8b | 52.6a | 50.9b | <0.001 | 49.5a | 48.5b | 49.6a | <0.001 | ||
b* | 5.0c | 5.6b | 5.9a | <0.001 | 5.3a | 5.3a | 3.3b | <0.001 | 0.6b | 3.4a | 0.5b | <0.001 | ||
∆E* 1 | – | 5.3 | 4.0 | – | – | 2.7 | 2.0 | – | – | 3.0 | 0.3 | – |
Wine A | Wine B | Wine C | P | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-RO-EP | Post-RO-EP | Post-EtOH | Pre-RO-EP | Post-RO-EP | Post-EtOH | Pre-RO-EP | Post-RO-EP | Post-EtOH | |||||
straight chain acids | acetic acid 1 | 488 | 428 | 459 | 855 | 796 | 824 | 871 | 646 | 722 | 0.107 | ||
propanoic acid | 2009 | 1873 | 1763 | 1954 | 1846 | 1741 | 3057 | 2060 | 1838 | 0.190 | |||
butanoic acid | 2100 | 1156 | 1562 | 3399 | 1614 | 1799 | 2577 | 1514 | 1804 | 0.014 | |||
hexanoic acid | 2277 | 2111 | 2172 | 1757 | 1656 | 1624 | 1828 | 1778 | 1641 | 0.055 | |||
octanoic acid | 3384 | 3344 | 3075 | 2986 | 2940 | 2622 | 3016 | 2962 | 2719 | <0.001 | |||
decanoic acid | 2129 | 2652 | 1870 | 2121 | 2246 | 1604 | 2066 | 2491 | 2070 | 0.021 | |||
straight chain ethyl esters | ethyl acetate 1 | 60 | 54 | 55 | 108 | 89 | 88 | 53 | 51 | 50 | 0.158 | ||
ethyl propanoate | 322 | 286 | 317 | 229 | 191 | 195 | 167 | 152 | 156 | 0.059 | |||
ethyl butanoate | 214 | 207 | 210 | 209 | 166 | 163 | 137 | 126 | 123 | 0.163 | |||
ethyl hexanoate | 411 | 385 | 402 | 375 | 301 | 300 | 325 | 294 | 302 | 0.084 | |||
ethyl octanoate | 41.8 | 33.8 | 33.7 | 74.0 | 50.5 | 51.8 | 31.5 | 28.0 | 30.5 | 0.145 | |||
ethyl decanoate | 114 | 75.7 | 89.0 | 167 | 93.6 | 109 | 133 | 96.3 | 116 | 0.019 | |||
branched acids | 2-methylpropanoic acid | 2011 | 1959 | 1818 | 4824 | 4578 | 4378 | 2300 | 2108 | 2135 | 0.051 | ||
2-methylbutanoic acid | 1219 | 1179 | 1206 | 1808 | 1642 | 1596 | 781 | 770 | 761 | 0.289 | |||
3-methylbutanoic acid | 1912 | 1720 | 1665 | 2337 | 2194 | 2140 | 1631 | 1625 | 1594 | 0.068 | |||
branched ethyl esters | ethyl 2-methylpropanoate | 120 | 115 | 114 | 312 | 258 | 258 | 69.6 | 62.5 | 67.3 | 0.290 | ||
ethyl 2-methylbutanoate | 27.1 | 26.8 | 26.6 | 28.5 | 24.2 | 24.3 | 10.3 | 9.5 | 9.7 | 0.241 | |||
ethyl 3-methylbutanoate | 39.3 | 38.4 | 38.4 | 50.9 | 42.7 | 43.2 | 17.4 | 15.6 | 15.9 | 0.201 | |||
acetates | 2-methylpropyl acetate | 39.5 | 38.6 | 36.3 | 126 | 105 | 100 | 27.5 | 27.3 | 26.7 | 0.340 | ||
2-methylbutyl acetate | 356 | 397 | 338 | 401 | 334 | 314 | 179 | 166 | 162 | 0.335 | |||
3-methylbutyl acetate | 1140 | 1379 | 1128 | 1334 | 1111 | 1038 | 597 | 564 | 541 | 0.469 | |||
hexyl acetate | 24.4 | 31.0 | 13.0 | 12.3 | 9.86 | 9.50 | 8.07 | 6.49 | 6.70 | 0.392 | |||
2-phenylethyl acetate | 158 | 157 | 140 | 76.4 | 68.8 | 63.3 | 67.6 | 67.3 | 67.4 | 0.164 | |||
alcohols | 2-methylpropanol 1 | 46 | 43 | 42 | 114 | 102 | 99 | 47 | 46 | 46 | 0.201 | ||
butanol | 2047 | 1693 | 1752 | 1232 | 1030 | 1057 | 1487 | 1340 | 1290 | 0.011 | |||
2/3-methylbutanol 1 | 176 | 161 | 160 | 198 | 182 | 171 | 148 | 146 | 143 | 0.067 | |||
1-hexanol | 2695 | 2290 | 2296 | 2271 | 1977 | 1876 | 1876 | 1774 | 1744 | 0.027 | |||
2-phenylethanol 1 | 78 | 74 | 73 | 73 | 70 | 68 | 55 | 53 | 52 | 0.003 |
Wine D | Wine E | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wine in | Wine out | Retentate | Permeate Pre-EP | Permeate Post-EP | Strip Water | P | Wine in | Wine out | Retentate | Permeate Pre-EP | Permeate Post-EP | Strip Water | P | ||
flow rate (L/h) | 3144 | 3059 | 2198 | 946 | 861 | 1138 | – | 3750 | 3664 | 2820 | 930 | 844 | 1555 | – | |
alcohol (% abv) | 15.2b | 12.6d | 15.9a | 14.2c | 3.7f | 8.8e | <0.001 | 14.7b | 12.3d | 15.2a | 13.3c | 1.7f | 7.6e | <0.001 | |
density (g/mL) | 0.993d | 0.996c | 0.997b | 0.985f | 0.998a | 0.988e | <0.001 | 0.994d | 0.997b | 0.997b | 0.995c | 0.999a | 0.990e | <0.001 | |
glycerol (g/L) | 10.0c | 10.3b | 12.3a | 4.9e | 5.4d | nd | <0.001 | 10.9c | 11.3b | 13.3a | 4.1e | 4.6d | nd | <0.001 | |
pH | 3.5c | 3.5c | 3.5c | 3.6b | 3.4d | 4.0a | <0.001 | 3.6c | 3.6c | 3.7b | 3.5d | 3.4e | 4.7a | <0.001 | |
TA (g/L) | 6.3c | 6.6b | 7.8a | 2.3d | 2.4d | 0.1e | <0.001 | 6.4c | 6.6b | 7.7a | 2.1d | 2.1d | 0.2e | <0.001 | |
VA (g/L) | 0.5 | 0.4 | 0.5 | 0.5 | 0.4 | 0.1 | – | 0.6 | 0.5 | 0.7 | 0.4 | 0.4 | 0.1 | – | |
succinic acid (g/L) | 5.3b | 5.5b | 7.2a | 1.0c | 1.0c | nd | <0.001 | 1.2b | 1.2b | 1.4a | 0.6c | 0.7c | nd | <0.001 | |
lactic acid (g/L) | 3.7b | 3.9b | 4.4a | 2.5c | 2.1c | nd | <0.001 | 1.8b | 2.2a | 2.3a | 1.4c | 1.3c | nd | <0.001 | |
wine color (au) | 14.8c | 16.3b | 20.9a | nd | nd | nd | <0.001 | 12.9c | 14.2b | 17.4a | nd | nd | nd | <0.001 | |
wine hue | 0.73a | 0.71c | 0.72b | nd | nd | nd | 0.005 | 0.67 | 0.66 | 0.67 | nd | nd | nd | ns | |
L* | 57.2a | 55.7b | 45.9c | nd | nd | nd | <0.001 | 61.4a | 58.9b | 53.1c | nd | nd | nd | <0.001 | |
a* | 41.2c | 42.6b | 49.8a | nd | nd | nd | <0.001 | 38.2c | 40.9b | 44.9a | nd | nd | nd | <0.001 | |
b* | 9.6c | 9.5b | 13.9a | nd | nd | nd | <0.001 | 1.0c | 1.3b | 2.9a | nd | nd | nd | <0.001 | |
∆E* a | – | 2.0 | 14.9 | – | – | – | – | – | 3.7 | 10.8 | – | – | – | – |
Wine D | Wine E | P | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wine in | Wine out | Retentate | Permeate Pre-EP | Permeate Post-EP | Strip Water | Wine in | Wine out | Retentate | Permeate Pre-EP | Permeate Post-EP | Strip Water | ||||
straight chain acids | acetic acid 1 | 682 | 653 | 672 | 600 | 614 | 301 | 461 | 445 | 468 | 425 | 364 | 100 | <0.001 | |
propanoic acid | 2207 | 2264 | 2107 | 3632 | 3126 | 1423 | 1287 | 1286 | 1465 | 1010 | 778 | 401 | 0.417 | ||
butanoic acid | 1152 | 714 | 1289 | 677 | <250 | <250 | 756 | 736 | 868 | 589 | <250 | <250 | 0.009 | ||
hexanoic acid | 2116 | 2080 | 2488 | 1574 | 1022 | 728 | 1275 | 1237 | 1477 | 759 | <250 | <250 | <0.001 | ||
octanoic acid | 2470 | 2283 | 2518 | 1023 | 529 | 466 | 1070 | 988 | 1242 | 587 | <250 | 362 | 0.041 | ||
decanoic acid | 514 | 518 | 565 | 254 | <100 | 162 | 493 | 461 | 542 | 317 | 207 | 286 | 0.003 | ||
straight chain ethyl esters | ethyl acetate 1 | 123 | 98 | 137 | 99 | 21 | 47 | 61 | 51 | 67 | 47 | 4 | 27 | 0.013 | |
ethyl propanoate | 473 | 353 | 548 | 345 | 59 | 164 | 207 | 174 | 238 | 146 | <25 | 80 | 0.032 | ||
ethyl butanoate | 307 | 239 | 359 | 183 | 35 | 92 | 171 | 145 | 202 | 85 | 5 | 47 | 0.004 | ||
ethyl hexanoate | 452 | 346 | 552 | 226 | 46 | 120 | 27 | 23 | 33 | 13 | 2 | 8 | 0.400 | ||
ethyl octanoate | 298 | 221 | 359 | 132 | 32 | 63 | 28 | 23 | 34 | 17 | 2 | 11 | 0.355 | ||
ethyl decanoate | 161 | 105 | 178 | 42 | 7 | 14 | 4 | 3 | 6 | 1 | <1 | <1 | 0.455 | ||
branched acids | 2-methylpropanoic acid | 1696 | 1583 | 1890 | 1084 | 738 | 506 | 1578 | 1535 | 1946 | 722 | 321 | 265 | <0.001 | |
2-methylbutanoic acid | 14586 | 12746 | 18916 | 5819 | 2474 | 1705 | 1202 | 1169 | 1506 | 335 | 177 | 187 | 0.361 | ||
3-methylbutanoic acid | 1651 | 1558 | 2141 | 787 | 447 | 280 | 1345 | 1311 | 1619 | 364 | 173 | 175 | <0.001 | ||
branched ethyl esters | ethyl 2-methylpropanoate | 339 | 307 | 466 | 121 | 31 | 52 | 124 | 102 | 157 | 41 | <5 | 21 | 0.070 | |
ethyl 2-methylbutanoate | 51 | 44 | 68 | 13 | 2 | 4 | 25 | 22 | 34 | 6 | <1 | 3 | 0.017 | ||
ethyl 3-methylbutanoate | 82 | 68 | 111 | 21 | 3 | 7 | 37 | 33 | 48 | 10 | <1 | 5 | 0.031 | ||
acetates | 2-methylpropyl acetate | 51 | 44 | 67 | 20 | <5 | 11 | 45 | 42 | 58 | 15 | <5 | <5 | <0.001 | |
2-methylbutyl acetate | 191 | 158 | 244 | 64 | 11 | 51 | 106 | 97 | 140 | 24 | <10 | 14 | 0.004 | ||
3-methylbutyl acetate | 593 | 474 | 747 | 202 | 42 | 181 | 1052 | 956 | 1345 | 269 | 23 | 165 | 0.017 | ||
hexyl acetate | 8 | 4 | 9 | 4 | <2 | 5 | 20 | 18 | 23 | 10 | 2 | 6 | 0.142 | ||
2-phenylethyl acetate | 297 | 240 | 358 | 170 | 35 | 111 | 855 | 806 | 1040 | 321 | 39 | 192 | 0.112 | ||
alcohols | 2-methylpropanol 1 | 68 | 63 | 85 | 30 | 7 | 19 | 66 | 63 | 81 | 22 | 2 | 14 | <0.001 | |
butanol | 1787 | 1587 | 1917 | 1458 | 649 | 989 | 1556 | 1460 | 1800 | 992 | 304 | 605 | <0.001 | ||
2/3-methylbutanol 1 | 152 | 143 | 189 | 59 | 15 | 38 | 330 | 339 | 445 | 158 | 12 | 80 | 0.037 | ||
1-hexanol | 2229 | 1952 | 2649 | 1262 | 252 | 761 | 3654 | 3322 | 4220 | 1900 | <50 | 1099 | 0.007 | ||
2-phenylethanol 1 | 287 | 280 | 328 | 171 | 124 | 43 | 414 | 409 | 473 | 238 | 159 | 67 | 0.001 |
Wine D | Wine E | P | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wine in | Wine out | Retentate | Permeate Pre-EP | Permeate Post-EP | Strip Water | Wine in | Wine out | Retentate | Permeate Pre-EP | Permeate Post-EP | Strip Water | ||||
straight chain acids | acetic acid 1 | 2.15 | 2.00 | 1.48 | 0.57 | 0.53 | 0.34 | 1.73 | 1.63 | 1.32 | 0.40 | 0.31 | 0.16 | <0.001 | |
propanoic acid | 6.94 | 6.93 | 4.63 | 3.44 | 2.69 | 1.62 | 4.82 | 4.71 | 4.13 | 0.94 | 0.66 | 0.62 | 0.001 | ||
butanoic acid | 3.62 | 2.18 | 2.83 | 0.64 | <0.22 | <0.28 | 2.83 | 2.69 | 2.45 | 0.55 | <0.21 | <0.39 | <0.001 | ||
hexanoic acid | 6.65 | 6.36 | 5.47 | 1.49 | 0.88 | 0.83 | 4.78 | 4.53 | 4.17 | 0.71 | <0.21 | <0.39 | <0.001 | ||
octanoic acid | 7.77 | 6.98 | 5.54 | 0.97 | 0.46 | 0.53 | 4.01 | 3.62 | 3.50 | 0.55 | <0.21 | 0.56 | 0.013 | ||
decanoic acid | 1.62 | 1.58 | 1.24 | 0.24 | <0.09 | 0.18 | 1.85 | 1.69 | 1.53 | 0.29 | 0.17 | 0.44 | <0.001 | ||
straight chain ethyl esters | ethyl acetate 1 | 0.39 | 0.30 | 0.30 | 0.09 | 0.02 | 0.05 | 0.23 | 0.19 | 0.19 | 0.04 | <0.01 | 0.04 | 0.004 | |
ethyl propanoate | 1.49 | 1.08 | 1.20 | 0.33 | 0.05 | 0.19 | 0.78 | 0.64 | 0.67 | 0.14 | <0.02 | 0.12 | 0.008 | ||
ethyl butanoate | 0.97 | 0.73 | 0.79 | 0.17 | 0.03 | 0.10 | 0.64 | 0.53 | 0.57 | 0.08 | <0.01 | 0.07 | <0.001 | ||
ethyl hexanoate | 1.42 | 1.06 | 1.21 | 0.21 | 0.04 | 0.14 | 0.10 | 0.09 | 0.09 | 0.01 | <0.01 | 0.01 | 0.377 | ||
ethyl octanoate | 0.94 | 0.68 | 0.79 | 0.13 | 0.03 | 0.07 | 0.11 | 0.08 | 0.10 | 0.02 | <0.01 | 0.02 | 0.319 | ||
ethyl decanoate | 0.51 | 0.32 | 0.39 | 0.04 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | <0.01 | <0.01 | <0.01 | 0.467 | ||
branched acids | 2-methylpropanoic acid | 5.33 | 4.84 | 4.15 | 1.03 | 0.64 | 0.58 | 5.92 | 5.63 | 5.49 | 0.67 | 0.27 | 0.41 | <0.001 | |
2-methylbutanoic acid | 45.86 | 38.99 | 41.58 | 5.50 | 2.13 | 1.94 | 4.51 | 4.28 | 4.25 | 0.31 | 0.15 | 0.29 | 0.329 | ||
3-methylbutanoic acid | 5.19 | 4.77 | 4.71 | 0.74 | 0.39 | 0.32 | 5.05 | 4.80 | 4.57 | 0.34 | 0.15 | 0.27 | <0.001 | ||
branched ethyl esters | ethyl 2-methylpropanoate | 1.06 | 0.94 | 1.02 | 0.11 | 0.03 | 0.06 | 0.47 | 0.37 | 0.44 | 0.04 | <0.01 | 0.03 | 0.033 | |
ethyl 2-methylbutanoate | 0.16 | 0.13 | 0.15 | 0.01 | <0.01 | <0.01 | 0.09 | 0.08 | 0.10 | 0.01 | <0.01 | 0.01 | 0.006 | ||
ethyl 3-methylbutanoate | 0.26 | 0.21 | 0.24 | 0.02 | <0.01 | 0.01 | 0.14 | 0.12 | 0.14 | 0.01 | <0.01 | 0.01 | 0.009 | ||
acetates | 2-methylpropyl acetate | 0.16 | 0.13 | 0.15 | 0.02 | <0.01 | 0.01 | 0.17 | 0.15 | 0.16 | 0.01 | <0.01 | <0.01 | <0.001 | |
2-methylbutyl acetate | 0.60 | 0.48 | 0.54 | 0.06 | 0.01 | 0.06 | 0.40 | 0.36 | 0.39 | 0.02 | <0.01 | 0.02 | <0.001 | ||
3-methylbutyl acetate | 1.86 | 1.45 | 1.64 | 0.19 | 0.04 | 0.21 | 3.94 | 3.50 | 3.79 | 0.25 | 0.02 | 0.26 | 0.034 | ||
hexyl acetate | 0.03 | 0.01 | 0.02 | 0.00 | <0.01 | 0.01 | 0.08 | 0.06 | 0.06 | 0.01 | <0.01 | 0.01 | 0.141 | ||
2-phenylethyl acetate | 0.93 | 0.73 | 0.79 | 0.16 | 0.03 | 0.13 | 3.21 | 2.95 | 2.93 | 0.30 | 0.03 | 0.30 | 0.140 | ||
alcohols | 2-methylpropanol 1 | 0.21 | 0.19 | 0.19 | 0.03 | 0.01 | 0.02 | 0.25 | 0.23 | 0.23 | 0.02 | <0.01 | 0.02 | <0.001 | |
butanol | 5.62 | 4.85 | 4.21 | 1.38 | 0.56 | 1.13 | 5.83 | 5.35 | 5.08 | 0.92 | 0.26 | 0.94 | <0.001 | ||
2/3-methylbutanol 1 | 0.48 | 0.44 | 0.42 | 0.06 | 0.01 | 0.04 | 1.24 | 1.24 | 1.25 | 0.15 | 0.01 | 0.12 | 0.064 | ||
1-hexanol | 7.01 | 5.97 | 5.82 | 1.19 | 0.22 | 0.87 | 13.70 | 12.17 | 11.90 | 1.77 | <0.04 | 1.71 | 0.018 | ||
2-phenylethanol 1 | 0.90 | 0.86 | 0.72 | 0.16 | 0.11 | 0.05 | 1.55 | 1.50 | 1.33 | 0.22 | 0.13 | 0.10 | 0.008 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, D.-T.; Stockdale, V.J.; Wollan, D.; Jeffery, D.W.; Wilkinson, K.L. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules 2019, 24, 1404. https://doi.org/10.3390/molecules24071404
Pham D-T, Stockdale VJ, Wollan D, Jeffery DW, Wilkinson KL. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules. 2019; 24(7):1404. https://doi.org/10.3390/molecules24071404
Chicago/Turabian StylePham, Duc-Truc, Vanessa J. Stockdale, David Wollan, David W. Jeffery, and Kerry L. Wilkinson. 2019. "Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction" Molecules 24, no. 7: 1404. https://doi.org/10.3390/molecules24071404
APA StylePham, D. -T., Stockdale, V. J., Wollan, D., Jeffery, D. W., & Wilkinson, K. L. (2019). Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules, 24(7), 1404. https://doi.org/10.3390/molecules24071404