Lethality of Sesquiterpenes Reprogramming Red Palm Weevil Detoxification Mechanism for Natural Novel Biopesticide Development
Abstract
:1. Introduction
2. Results
2.1. Toxicity of Sesquiterpenes against Red Palm Weevil Larvae
2.2. Growth Retarding Activities of Sesquiterpens
2.3. Regulation of Detoxification Genes of Red Palm Weevils in Response to Sesquiterpenes
2.3.1. Cytochrome P450 Gene Expression of Red Palm Weevil Larvae
2.3.2. Glutathione S-Transferase Gene Expression of Red Palm Weevil Larvae
2.3.3. Esterase Gene Expression of Red Palm Weevil Larvae
3. Discussion
4. Materials and Methods
4.1. Insects Rearing
4.2. Sesquiterpenes
4.3. Laboratory Toxicity Testing of Sesquiterpenes against Red Palm Weevil Larvae
4.4. Larval Growth and Development Retarding Abilities of Tested Sesquiterpenes
4.5. Physiological Impacts of Sesquiterpenes on the Host Detoxification Defense Mechanism
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Jabr, A.M.; Al-Ayied, H.Y. Managing invasive populations of red palm weevil: A worldwide perspective. J. Food Agric. Environ. 2013, 11, 456–463. [Google Scholar]
- Abdallah, O.I.; Alamer, S.S.; Alrasheed, A.M. Monitoring pesticide residues in dates marketed in Al-Qassim, Saudi Arabia using a QuEChERS methodology and Liquid Chromatography-Tandem Mass Spectrometry. Biomed. Chromatogr. 2018, 32, e4199. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. In Plant, Soil and Microbes; Springer International Publishing: Cham, Switzerland, 2016; pp. 253–269. [Google Scholar]
- Al-Ayedh, H.; Hussain, A.; Rizwan-ul-Haq, M.; Al-Jabr, A.M. Status of insecticide resistance in field-collected populations of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Int. J. Agric. Biol. 2016, 18, 103–110. [Google Scholar] [CrossRef]
- Kohler, H.-R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Balandrin, M.; Klocke, J.; Wurtele, E.; Bollinger, W. Natural plant chemicals: sources of industrial and medicinal materials. Science 1985, 228, 1154–1160. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.; Ruan, X.; Zhao, Y.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Khan, Z.R.; Saxena, R.C. Effect of steam distillate extracts of resistant and susceptible rice cultivars on behavior of Sogatella furcifera (Homoptera: Delphacidae). J. Econ. Entomol. 1986, 79, 928–935. [Google Scholar] [CrossRef]
- Zhao, B.; Grant, G.; Langevin, D.; MacDonald, L. Deterring and inhibiting effects of quinolizidine alkaloids on spruce budworm (Lepidoptera: Tortricidae) oviposition. Environ. Entomol. 1998, 27, 984–992. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J. A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Rev. 2015, 34, 76–91. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Iason, G. The role of plant secondary metabolites in mammalian herbivory: Ecological perspectives. Proc. Nutr. Soc. 2005, 64, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.; Abdulah, A. Assessment of Boxus chinensis oil and precocene II for the control of the red palm weevil, Rhychophorus ferrugineus (Oliv.) (Coleoptera-Curculionidae) and the palm beetle, Pseudophilus testaceous. J. Entomol. 2005, 2, 1–8. [Google Scholar]
- Salama, H.; Ismail, I. Potential of certain natural extracts for the control of the red palm weevil, Rhynchophorus ferrugineus (Oliver). Arch. Phytopathol. Plant Prot. 2007, 40, 233–236. [Google Scholar] [CrossRef]
- El-Bokl, M.M.; Baker, R.F.A.; El-Gammal, H.L.; Mahmoud, M.Z. Biological and histopathological effects of some insecticidal agents against red palm weevil Rhynchophorus ferrugineus. Egypt. Acad. J. Biol. Sci. 2010, 1, 7–22. [Google Scholar] [CrossRef]
- Shukla, P.; Vidyasagar, P.S.P.V.; Aldosari, S.A.; Abdel-Azim, M. Antifeedant activity of three essential oils against the red palm weevil, Rhynchophorus ferrugineus. Bull. Insectology 2012, 65, 71–76. [Google Scholar]
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H.; Aljabr, A.M. Toxicity and detoxification mechanism of black pepper and its major constituent in controlling Rhynchophorus ferrugineus Olivier (Curculionidae: Coleoptera). Neotrop. Entomol. 2017, 46, 685–693. [Google Scholar] [CrossRef]
- Abdullah, M.A.R. Identification of the biological active compounds of two natural extracts for the control of the red palm weevil, Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Egypt Acad. J. Biol. Sci. 2009, 2, 35–44. [Google Scholar] [CrossRef]
- AlJabr, A.M.; Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 2017, 22, 169. [Google Scholar] [CrossRef]
- AlJabr, A.M.; Hussain, A.; Rizwan-ul-haq, M.; Al-Ayedh, H. Method for Controlling Growth of Red Palm Weevil. U.S. Patent 9,596,851, 21 March 2017. [Google Scholar]
- Ahn, Y.J.; Kwon, M.; Park, H.M.; Han, C.K. Potent insecticidal activity of Ginkgo biloba derived Trilactone terpenes against Nilaparvata lugens. Phytochem. Pest Control 1997, 90–105. [Google Scholar] [CrossRef]
- Maistrello, L.; Henderson, G.; Laine, R.A. Comparative effects of vetiver oil, nootkatone and disodium octaborate tetrahydrate on Coptotermes formosanus and its symbiotic fauna. Pest Manag. Sci. 2003, 59, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Henderson, G. Evaluation of potential use of nootkatone against maize weevil (Sitophilus zeamais Motschulsky) and rice weevil [S. oryzae (L.)](Coleoptera: Curculionidae). J. Stored Prod. Res. 2010, 46, 129–132. [Google Scholar] [CrossRef]
- Anderson, J.A.; Coats, J.R. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol. 2012, 102, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, M. Acute, lethal and synergistic effects of some terpenes against Tribolium castaneum herbst (Coleoptera: Tenebrionidae). Ecol. Balk. 2012, 4, 53–62. [Google Scholar]
- Di Campli, E.; Di Bartolomeo, S.; Delli Pizzi, P.; Di Giulio, M.; Grande, R.; Nostro, A.; Cellini, L. Activity of tea tree oil and nerolidol alone or in combination against Pediculus capitis (head lice) and its eggs. Parasitol. Res. 2012, 111, 1985–1992. [Google Scholar] [CrossRef]
- Ali, A.; Murphy, C.C.; Demirci, B.; Wedge, D.E.; Sampson, B.J.; Khan, I.A.; Baser, K.H.C.; Tabanca, N. Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Manag. Sci. 2013, 69, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.W. Picrotoxin-like channel blockers of GABAA receptors. Proc. Natl. Acad. Sci. USA 2006, 103, 6081–6082. [Google Scholar] [CrossRef] [Green Version]
- Ozoe, Y. γ-Aminobutyrate- and Glutamate-gated Chloride Channels as targets of insecticides. Adv. Insect Physiol. 2013, 44, 211–286. [Google Scholar]
- Shin, R.; Ikemoto, S. Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression. BMC Neurosci. 2010, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Godinho, A.F.; de Oliveira Souza, A.C.; Carvalho, C.C.; Horta, D.F.; De Fraia, D.; Anselmo, F.; Chaguri, J.L.; Faria, C.A. Memory impairment due to fipronil pesticide exposure occurs at the GABA A receptor level, in rats. Physiol. Behav. 2016, 165, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Kohn, R.; Platt, S.; Saltman, S.Y. The Picrotoxin-Barbiturate Antagonism. J. Am. Med. Assoc. 1938, 111, 387–390. [Google Scholar] [CrossRef]
- Coppola, A.; Moshé, S.L. Animal models. Handbook Clin. Neurol. 2012, 107, 63–98. [Google Scholar]
- Freeman, G.M.; Nakajima, M.; Ueda, H.R.; Herzog, E.D. Picrotoxin dramatically speeds the mammalian circadian clock independent of Cys-loop receptors. J. Neurophysiol. 2013, 110, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozoe, Y.; Akamatsu, M.; Higata, T.; Ikeda, I.; Mochida, K.; Koike, K.; Ohmoto, T.; Nikaido, T. Picrodendrin and related terpenoid antagonists reveal structural differences between ionotropic GABA receptors of mammals and insects. Bioorg. Med. Chem. 1998, 6, 481–492. [Google Scholar] [CrossRef]
- McGovran, E.R.; Mayer, E.L.; Clark, E.P. The Toxicity of the Natural Bitter Substances, Quassin, Tenulin, Helenalin, and Picrotoxin, and Some of Their Derivatives to Certain Insects; US Department of Agriculture, Bureau of Entomology and Plant Quarantine: Washington, DC, USA, 1942; p. E572.
- Amat, C.; Hue, B. Activation of picrotoxin-resistant GABA receptors by GABA and related compounds induces modulation of cockroach dorsal paired median (DPM) neuron firing. J. Insect Physiol. 1997, 43, 1125–1131. [Google Scholar] [CrossRef]
- MacLeod, K.; Laurent, G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 1996, 274, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.F.; Laycock, I.; Wright, G.A. γ-Aminobutyric acid receptor A-mediated inhibition in the honeybee’s antennal lobe is necessary for the formation of configural olfactory percepts. Eur. J. Neurosci. 2012, 35, 1718–1724. [Google Scholar] [CrossRef]
- Al-Shawaf, A.M.; Al-Shagag, A.; Al-Bagshi, M.; Al-Saroj, S.; Al-Bather, S.; Al-Dandan, A.M.; Abdallah, A.B.; Faleiro, J.R. A quarantine protocol against red palm weevil Rhynchophorus ferrugineus (olivier) (Coleptera: Curculiondae) in date palm. J. Plant Prot. Res. 2013, 53, 409–415. [Google Scholar] [CrossRef]
- Nabawy, M. Metwaly method Endotherapic Injection for palm trees – the new methods used to control the red palm weevil (Rhynchophorus ferrugineus Olivier). Acta Hortic. 2010, 977–984. [Google Scholar] [CrossRef]
- Shawir, M.S.; Abbassy, M.A.; Salem, Y.M. Laboratory evaluation of some insecticides against larval and adult stages of Red Palm Weevil’s Rhynchophorus ferrugineus (Olivier). Alex. Sci. Exch. J. 2014, 35, 75–79. [Google Scholar]
- Hussain, A.; Tian, M.Y.; He, Y.R.; Ahmed, S. Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Sci. 2009, 16, 511–517. [Google Scholar] [CrossRef]
- Koul, O.; Singh, G.; Singh, R.; Singh, J.; Daniewski, W.M.; Berlozecki, S. Bioefficacy and mode-of-action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. J. Biosci. 2004, 29, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.B.; Silva, W.; Macedo, M.L.R.; Peres, M.T.L.P. Effects of Croton urucurana extracts and crude resin on Anagasta kuehniella (Lepidoptera: Pyralidae). Braz. Arch. Biol. Technol. 2009, 52, 653–664. [Google Scholar] [CrossRef]
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H.; AlJabr, A. Susceptibility and immune defence mechanisms of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) against entomopathogenic fungal infections. Int. J. Mol. Sci. 2016, 17, 1518. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H.; Ahmed, S.; Al-Jabr, A.M. Effect of Beauveria bassiana infection on the feeding performance and antioxidant defence of red palm weevil, Rhynchophorus ferrugineus. BioControl 2015, 60, 849–859. [Google Scholar] [CrossRef]
- AlJabr, A.; Hussain, A.; Rizwan-ul-haq, M. Toxin-Pathogen synergy reshaping detoxification and antioxidant defense mechanism of Oligonychus afrasiaticus (McGregor). Molecules 2018, 23, 1978. [Google Scholar] [CrossRef]
- Hussain, A.; Ruan, L.; Tian, M.; He, Y. Pathogenic effect of Metarhizium anisopliae on the larval growth and development of Ocinara varians Walker (Lepidoptera: Bombycidae). Pak. Entomol. 2009, 31, 116–121. [Google Scholar]
- Martinez, D.S.; Freire, M.d.; Mazzafera, P.; Araujo-Júnior, R.T.; Bueno, R.D.; Macedo, M.L. Insecticidal effect of labramin, a lectin-like protein isolated from seeds of the beach apricot tree, Labramia bojeri, on the Mediterranean flour moth, Ephestia kuehniella. J. Insect Sci. 2012, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Statistix Statistix 8.1 Tallahassee; Analytical Software: Orlando, FL, USA, 2003.
- SAS Institute SAS User’s Guide: Statistics; SAS Institute: Cary, NC, USA, 2000.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Treatment | LD50 (95% CI) (ppm) | χ2 | Slope ± Standard Error |
---|---|---|---|
Farnesyl acetate | 7867 (6911–8956) | 1.18 | 2.45 ± 0.29 |
Farnesol | 6559 (5543–7761) | 4.09 | 2.07 ± 0.28 |
Picrotoxin | 317 (538–709) | 1.05 | 2.39 ± 0.29 |
β-Caryophyllene * | n/a | n/a | n/a |
(+)-Cedrol * | n/a | n/a | n/a |
Nerolidol * | n/a | n/a | n/a |
(+)-Nootkatone * | n/a | n/a | n/a |
Parthenolide * | n/a | n/a | n/a |
Treatments | Approximate Digestibility (AD) | ECI | ECD |
---|---|---|---|
Picrotoxin | 74.49 ± 0.26a | 5.07 ± 0.34e | 6.81 ± 0.47e |
Farnesol | 62.70 ± 0.39b | 14.09 ± 0.28d | 22.49 ± 0.57d |
Farnesyl acetate | 60.70 ± 0.26c | 15.79 ± 0.51 | 26.01 ± 0.85c |
β-Caryophyllene | 53.85 ± 0.28de | 18.68 ± 0.15ab | 34.70 ± 0.46b |
(+)-Cedrol | 55.13 ± 0.75d | 18.40 ± 0.48ab | 33.44 ± 1.32b |
Nerolidol | 53.85 ± 0.28de | 18.61 ± 0.15ab | 34.57 ± 0.46b |
(+)-Nootkatone | 63.89 ± 0.50b | 17.83 ± 0.54b | 27.95 ± 1.06c |
Parthenolide | 52.82 ± 0.88ef | 18.75 ± 0.48ab | 35.60 ± 1.50ab |
Control | 51.55 ± 0.23f | 19.22 ± 0.16a | 37.29 ± 0.48a |
Treatments | Cytochrome P450 | GST | Esterase |
---|---|---|---|
Picrotoxin | 2.01 ± 0.12g | 1.97 ± 0.11g | 1.09 ± 0.06d |
Farnesol | 3.96 ± 0.34f | 4.63 ± 0.41f | 1.16 ± 0.07d |
Farnesyl acetate | 5.58 ± 0.71e | 7.62 ± 0.69e | 1.26 ± 0.08cd |
β-Caryophyllene | 15.71 ± 0.38c | 18.73 ± 0.36c | 2.54 ± 0.17a |
(+)-Cedrol | 16.26 ± 0.46c | 19.20 ± 0.38c | 2.37 ± 0.08ab |
Nerolidol | 17.87 ± 0.47b | 21.96 ± 0.55b | 2.18 ± 0.06b |
(+)-Nootkatone | 10.53 ± 0.65d | 15.78 ± 0.87d | 1.51 ± 0.05c |
Parthenolide | 21.41 ± 0.69a | 25.25 ± 0.49a | 2.20 ± 0.07b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Rizwan-ul-haq, M.; AlJabr, A.M.; Al-Ayedh, H. Lethality of Sesquiterpenes Reprogramming Red Palm Weevil Detoxification Mechanism for Natural Novel Biopesticide Development. Molecules 2019, 24, 1648. https://doi.org/10.3390/molecules24091648
Hussain A, Rizwan-ul-haq M, AlJabr AM, Al-Ayedh H. Lethality of Sesquiterpenes Reprogramming Red Palm Weevil Detoxification Mechanism for Natural Novel Biopesticide Development. Molecules. 2019; 24(9):1648. https://doi.org/10.3390/molecules24091648
Chicago/Turabian StyleHussain, Abid, Muhammad Rizwan-ul-haq, Ahmed Mohammed AlJabr, and Hassan Al-Ayedh. 2019. "Lethality of Sesquiterpenes Reprogramming Red Palm Weevil Detoxification Mechanism for Natural Novel Biopesticide Development" Molecules 24, no. 9: 1648. https://doi.org/10.3390/molecules24091648
APA StyleHussain, A., Rizwan-ul-haq, M., AlJabr, A. M., & Al-Ayedh, H. (2019). Lethality of Sesquiterpenes Reprogramming Red Palm Weevil Detoxification Mechanism for Natural Novel Biopesticide Development. Molecules, 24(9), 1648. https://doi.org/10.3390/molecules24091648