The Ancient Neapolitan Sweet Lime and the Calabrian Lemoncetta Locrese Belong to the Same Citrus Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Flavonoids, Organic Acids and Proximate Constituents
2.2. Chirospecific Analysis
2.3. Volatile Organic Compounds Analysis
2.4. Genetic Comparison by DNA-Based Molecular Markers
3. Materials and Methods
3.1. Plant Materials
3.2. Preparation of the Samples for Chemical Analyses
3.3. Proximate Constituents
3.4. Organic Acid Analysis
3.5. Flavonoid Analysis
3.6. Chirospecific Analysis of Sabinene, β-Pinene, Limonene, Linalool and Linalyl Acetate in Essential Oils
3.7. Volatile Organic Compounds (VOCs)
3.8. Gas Chromatography-Mass Spectrometry Analysis
3.9. Random Amplified Polymorphic DNA (RAPD-PCR) Analysis
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Menagio, E. Le Origini della Lingua Italiana. 1685. Available online: https://archive.org/details/bub_gb_1qxS0CTgIusC/page/n2 (accessed on 1 October 2019).
- International Union for the Protection of New Varieties of Plants (UPOV). Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability CITRUS L.—Group 3 LEMONS and LIMES (TG/203/1 Rev). Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjTue6Z7c3mAhUn7GEKHXJVAMoQFjAAegQIBRAC&url=https%3A%2F%2Fwww.upov.int%2Fedocs%2Ftgdocs%2Fen%2Ftg203.doc&usg=AOvVaw3xcpDB0URn31Vdv0HftQCj (accessed on 24 December 2019).
- Amenta, N. Avvocato Napoletano, Parte I. 1724. Della Lingua Nobile d’Italia e del Modo di Leggiadramente Scrivere in Essa, non che di Perfettamente Parlare. Available online: https://archive.org/details/bub_gb_XMzAbS68mxIC (accessed on 24 December 2019).
- Raimondo, F.M.; Cornara, L.; Mazzola, P.; Smeriglio, A. Le lumie di Sicilia: Note storiche e botaniche. Quad. Bot. Amb. Appl. 2015, 26, 43–50. [Google Scholar]
- Curk, F.; Ollitrault, F.; Garcia-Lor, A.; Luro, F.; Navarro, L.; Ollitrault, P. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann. Bot. 2016, 117, 565–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butelli, E.; Licciardello, C.; Ramadugu, C.; Durand-Hulak, M.; Celant, A.; Reforgiato Recupero, G.; Froelicher, Y.; Martin, C. Noemi Controls Production of Flavonoid Pigments and Fruit Acidity and Illustrates the Domestication Routes of Modern Citrus Varieties. Curr. Biol. 2019, 26, 158–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strazzer, P.; Spelt, C.E.; Li, S.; Bliek, M.; Federici, C.T.; Roose, M.L.; Koes, R.; Quattrocchio, F.M. Hyperacidification of citrus fruits by a vacuolar proton-pumping P-ATPase Complex. Nat. Commun. 2019, 10, 744. [Google Scholar] [CrossRef]
- Tanaka, T. Citrologia: Semicentennial Commemoration Papers on Citrus Studies. Available online: https://www.semanticscholar.org/paper/Citrologia-%3A-semi-centennial-commemoration-papers-%E9%95%B7%E4%B8%89%E9%83%8E/17726500cd7a095326ad7d8f52ce024e6ff0ee9c (accessed on 24 December 2019).
- Chapot, H. Trois citrus Marocains. Al Awamia 1962, 2, 47–81. [Google Scholar]
- Ferrarius, J.B. Hesperides, Sive de Malorum Aureorum Cultura et Usu; Sumptibus Hermani Scheus: Rome, Italy, 1646. [Google Scholar]
- Bimbi, B. 1715—Citrus Fruit under the Medici family in Florence. Melangoli, Cedri e Limoni. An Extensive Collection of Citrus Fruit Is Depicted with Great Accuracy. The Fruit at the Centre of the Canvas (Number 14 and Circled in Red) Is Named as “Melangola”, a Vernacular Term used to Define a “Limetta dolce” in the XVIII Century. Available online: https://commons.wikimedia.org/wiki/File:Bartolomeo_bimbi,_melagoli,_cedri_e_limoni,_1715,_01.JPG (accessed on 1 October 2019).
- Benk, E.; Bergmann, R. Zur Kenntnis der Sűβlimette. Fruchtsaft. Ind. 1961, 6, 87–90. [Google Scholar]
- Di Giacomo, A.; Costa, D.; Tita, S. Contributo alla conoscenza della limetta dolce. Nota II-Il succo. Ess. Deriv. Agr. 1970, 40, 124–128. [Google Scholar]
- Asencio, A.D.; Serrano, M.; García-Martínez, S.; Pretel, M.T. Organic acids, sugars, antioxidant activity, sensorial and other fruit characteristics of nine traditional Spanish citrus fruits. Eur. Food Res. Technol. 2018, 244, 1497–1508. [Google Scholar] [CrossRef]
- Brune, A.; Müller, M.; Taiz, L.; Gonzalez, P.; Etxeberria, E. Vacuolar acidification in citrus fruit: Comparison between acid lime (Citrus Aurantifolia) and sweet lime (Citrus Limmetioides) juice cells. J. Am. Soc. Hortic. Sci. 2002, 127, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Ministero delle Politiche Agricole e Forestali (MIPAF). “Limone Costa d’Amalfi” e “Limone di Sorrento” DM 20/07/1999. Italian Official Gazette GURI n. 177 on 30/07/1999. 2001. Available online: https://www.gazzettaufficiale.it/eli/gu/1999/07/30/177/sg/pdf (accessed on 9 October 2019).
- Locatelli, M.; Carlucci, G.; Genovese, S.; Epifano, F. Analytical methods and phytochemistry of the typical italian liquor “Limoncello”: A review. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; Venketeshwer, R., Ed.; Intech: Rijeka, Croatia, 2012; pp. 93–106. [Google Scholar]
- Ferrarini, A. Farmacopea di Antonio Ferrarini Farmacista, Membro della Comissione di Sanità della Città e Provincia di Bologna, e già Ripetitore di Farmacia nell’Università, Dedicata a Sua Eminenza Reverendissima il Signor Cardinale Carlo Oppizzoni Arcivescovo della stessa città; Per le stampe del Sassi: Bologna, Italy, 1825. [Google Scholar]
- Pitrè, G. Medicina Popolare Siciliana; Clausen, C.: Torino-Palermo, Italy, 1896. [Google Scholar]
- Nicolosi, E.; Deng, Z.N.; Gentile, A.; La Malfa, S.; Continella, G.; Tribulato, E. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor. Appl. Genet. 2000, 100, 1155–1156. [Google Scholar] [CrossRef]
- Servillo, L.; Giovane, A.; Balestrieri, M.L.; Cautela, D.; Castaldo, D. N-methylated tryptamine derivatives in citrus genus plants: Identification of N, N, N -trimethyltryptamine in bergamot. J. Agric. Food Chem. 2012, 60, 9512–9518. [Google Scholar] [CrossRef] [PubMed]
- Cautela, D.; Vella, F.M.; Laratta, B. The effect of processing methods on phytochemical composition in bergamot juice. Foods 2019, 8, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of Citrus species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouly, P.P.; Arzouyan, C.R.; Gaydou, E.M.; Estienne, J.M. Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. J. Agric. Food Chem. 1994, 42, 70–79. [Google Scholar] [CrossRef]
- Dhuique-Mayer, C.; Caris-Veyrat, C.; Ollitrault, P.; Curk, F.; Amiot, M.J. Varietal and interspecific influence on micronutrient contents in Citrus from the Mediterranean area. J. Agric. Food Chem. 2005, 53, 2140–2145. [Google Scholar] [CrossRef] [PubMed]
- Abad-García, B.; Garmón-Lobato, S.; Sánchez-Ilárduya, M.B.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Alonso-Salces, R.M. Polyphenolic contents in Citrus fruit juices: Authenticity Assessment. Eur. Food Res. Technol. 2014, 238, 803–818. [Google Scholar] [CrossRef]
- Grandi, R.; Trifirò, A.; Gherardi, S.; Calza, M.; Saccani, G. Characterization of lemon juice on the basis of flavonoid content. Fruit Process. 1994, 11, 335–359. [Google Scholar]
- Ooghe, W.C.; Detavernier, C.M. Detection of the addition of Citrus Reticulata and Hybrids to Citrus Sinensis by flavonoids. J. Agric. Food Chem. 1997, 45, 1633–1637. [Google Scholar] [CrossRef]
- Peterson, J.J.; Beecher, G.R.; Bhagwat, S.A.; Dwyer, J.T.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, 74–80. [Google Scholar] [CrossRef]
- Cautela, D.; Laratta, B.; Santelli, F.; Trifirò, A.; Servillo, L.; Castaldo, D. Estimating bergamot juice adulteration of lemon juice by high-performance liquid chromatography (HPLC) analysis of flavanone glycosides. J. Agric. Food Chem. 2008, 56, 5407–5414. [Google Scholar] [CrossRef]
- Aubert, B. Contexte Historique, Scientifique et Artistique de l’Histoire Naturelle des Orangers. In Histoire naturelle des orangers de Risso et Poiteau, Commentaires et Développements; Aubert, B., Bové, J.M., Eds.; Connaissance & Mémoires: Paris, France, 2000; p. 40. [Google Scholar]
- Smeriglio, A.; Cornara, L.; Denaro, M.; Barreca, D.; Burlando, B.; Xiao, J.; Trombetta, D. Antioxidant and cytoprotective activities of an ancient Mediterranean Citrus (Citrus Lumia Risso) albedo extract: Microscopic observations and polyphenol characterization. Food Chem. 2019, 279, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Da Conceicao Neta, E.R.; Johanningsmeier, S.D.; Drake, M.A.; McFeeters, R.F. A Chemical basis for sour taste perception of acid solutions and fresh-pack dill pickles. J. Food Sci. 2007, 72, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, A.; Rispoli, G. Contributo alla conoscenza della limetta dolce. Nota I L’olio essenziale. Ess. Deriv. Agr. 1969, 39, 115–123. [Google Scholar]
- El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef] [PubMed]
- Dugo, G.; Bartle, K.D.; Bonaccorsi, I.; Catalfamo, M.; Cotroneo, A. Advanced analytical techniques for the analysis of Citrus essential oils. Part 2. Volatile fraction: LC-HRGC and MDGC. Ess. Deriv. Agr. 1999, 69, 159–217. [Google Scholar]
- Qiu, S.; Wang, J. Application of Sensory Evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for quality detection in Citrus fruits. J. Food Sci. 2015, 80, 2296–2304. [Google Scholar] [CrossRef]
- Williams, J.G.K.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.A.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef] [Green Version]
- Bruni, I.; De Mattia, F.; Martellos, S.; Galimberti, A.; Savadori, P.; Casiraghi, M.; Nimis, P.L.; Labra, M. DNA barcoding as an effective tool in improving a digital plant identification system: A case study for the area of Mt. Valerio, Trieste (NE Italy). PLoS ONE 2012, 7, e43256. [Google Scholar] [CrossRef]
- Deng, Z.N.; Gentile, A.; Nicolosi, E.; Domina, F.; Vardi, A.; Tribulato, E. Identification of in vivo and in vitro lemon mutants by RAPD Markers. J. Hortic. Sci. 1995, 70, 117–125. [Google Scholar] [CrossRef]
- Gouri Sankar, T.; Gopi, V.; Deepa, B.; Gopal, K. Genetic diversity analysis of sweet orange (Citrus sinensis Osbeck) varieties/clones through RAPD markers. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 75–84. [Google Scholar]
- Mariniello, L.; Sommella, M.G.; Cozzolino, A.; Di Pierro, P.; Ercolini, D.; Porta, R. Identification of Campania Citrus limon L. by Random Amplified Polymorphic DNA markers. Food Biotechnol. 2004, 18, 289–297. [Google Scholar] [CrossRef]
- Iannelli, D.; Cottone, C.; Viscardi, M.; D’Apice, L.; Capparelli, R.; Boselli, M. Identification of genotypes of lemon by flow cytometry and RAPD markers. Int. J. Plant Sci. 1998, 159, 864–869. [Google Scholar] [CrossRef]
- Galderisi, U.; Cipollaro, M.; Di Bernardo, G.; De Masi, L.; Galano, G.; Cascino, A. molecular typing of italian sweet chestnut cultivars by Random Amplified Polymorphic DNA analysis. J. Hortic. Sci. Biotechnol. 1998, 73, 259–263. [Google Scholar] [CrossRef]
- De Masi, L.; Castaldo, D.; Galano, G.; Minasi, P.; Laratta, B. Genotyping of fig (Ficus carica L) via RAPD markers. J. Sci. Food Agric. 2005, 82, 2235–2242. [Google Scholar] [CrossRef]
- International Federation of Fruit Juice Producers (IFFJP). International Fruit and Vegetable Juice Association. Available online: https://ifu-fruitjuice.com/ (accessed on 24 December 2019).
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid Composition of Citrus juices. Molecules 2007, 12, 1641–1647. [Google Scholar] [CrossRef] [Green Version]
- Galtieri, V.; Laratta, B.; Minasi, P.; De Masi, L. Indagine RAPD-PCR per la tipizzazione delle Cultivar di bergamotto (Citrus bergamia Risso et Poiteau). Ess. Deriv. Agr. 2004, 74, 19–23. [Google Scholar]
Peak | Compounds | Neapolitan Limmo | Lemoncetta Locrese | p-Value | ||
---|---|---|---|---|---|---|
Mean ± sd | Min–Max | Mean ± sd | Min–Max | |||
1 | Eriocitrin (ERC) | 166 ± 15 | 96–229 | 261 ± 64 | 176–327 | 0.003 |
2 | Neo-Eriocitrin (NER) | n.d. | n.d. | |||
3 | Rutin (RUT) | 4 ± 1 | 3–5 | 9 ± 4 | 5–12 | 0.05 |
4 | Narirutin (NRT) | 1 | trace-2 | 1 | trace-2 | |
5 | Naringin (NRG) | n.d. | n.d. | |||
6 | Hesperidin (HSP) | 130 ± 17 | 45–189 | 270 ± 80 | 178–322 | 0.001 |
7 | Neohesperidin (NHP) | n.d. | n.d. | |||
8 | Diosmin (DSM) | 12 ± 3 | 10–17 | 24 ± 11 | 15–30 | 0.04 |
9 | Poncirin (PON) | n.d. | n.d. | |||
10 | Didimin (DDM) | n.d. | n.d. |
Proximate Constituents | Neapolitan Limmo | Lemoncetta Locrese | p-Value | ||
---|---|---|---|---|---|
Mean ± sd | Min–Max | Mean ± sd | Min–Max | ||
Total Soluble Solids | 7.9 ± 0.5 | 7.6–8.5 | 8.4 ± 0.5 | 8.0–8.9 | 0.001 |
pH | 5.8 ± 0.2 | 5.7–5.9 | 5.9 ± 0.2 | 5.8–6.0 | 0.991 |
Titratable Acidity | 1.22 ± 0.2 | 0.98–1.32 | 0.98 ± 0.2 | 0.84–1.20 | 0.079 |
Tartaric Acid | 0.15 ± 0.02 | 0.13–0.17 | 0.22 ± 0.04 | 0.17–0.26 | 0.071 |
Quinic Acid | 0.15 ± 0.05 | 0.10–0.22 | 0.32 ± 0.10 | 0.19–0.43 | 0.045 |
Malic Acid | 1.57 ± 0.10 | 1.45–1.70 | 1.88 ± 0.31 | 1.42–2.14 | 0.467 |
Citric Acid | 0.94 ± 0.01 | 0.85–1.02 | 0.48 ± 0.25 | 0.13–0.70 | 0.003 |
Fumaric Acid | 0.01 ± 0.01 | 0–0.01 | 0.01 ± 0.01 | 0–0.01 | 0.767 |
Compound | Enantiomeric Ratio | Enantiomeric Excess, ee (%) | |||
---|---|---|---|---|---|
Neapolitan Limmo | Lemoncetta Locrese | Neapolitan limmo | Lemoncetta Locrese | ||
β-pinene | R-(+) | 0.5 | 0.5 | 99.2 | 99.1 |
β-pinene | S-(−) | 99.5 | 99.5 | ||
Sabinene | R-(+) | 15.4 | 15.8 | 69.3 | 68.4 |
Sabinene | S-(−) | 84.6 | 84.2 | ||
Limonene | S-(−) | 0.6 | 0.5 | 99.2 | 99.0 |
Limonene | R-(+) | 99.4 | 99.5 | ||
Linalool | R-(−) | 8.3 | 83.6 | 66.9 | 67.2 |
Linalool | S-(+) | 16.7 | 16.4 | ||
Linalyl acetate | R(−) | 98.8 | 98.7 | 97.6 | 97.6 |
Linalyl acetate | S-(+) | 1.2 | 1.3 |
Peak | Volatile Compounds | Neapolitan Limmo | Lemoncetta Locrese | p-Value | ||
---|---|---|---|---|---|---|
A/A s.i. | % | A/A s.i. | % | |||
Terpenes | ||||||
1 | α-phellandrene | 0.005 ± 0.00 | 0.24 ± 0.00 | 0.007 ± 0.00 | 0.33 ± 0.00 | 0.009 |
2 | α-pinene | 0.004 ± 0.00 | 0.18 ± 0.00 | 0.004 ± 0.00 | 0.18 ± 0.00 | 0.06 |
3 | β-phellandrene | 0.006 ± 0.00 | 0.29 ± 0.00 | 0.009 ± 0.00 | 0.45 ± 0.00 | 0.009 |
4 | β-pinene | 0.03 ± 0.00 | 1.38 ± 0.00 | 0.039 ± 0.01 | 1.87 ± 0.01 | 0.009 |
5 | β-myrcene | 0.035 ± 0.00 | 1.62 ± 0.00 | 0.031 ± 0.01 | 1.49 ± 0.02 | 0.009 |
6 | D-limonene | 2.051 ± 0.01 | 93.82 ± 0.01 | 1.943 ± 0.02 | 93.39 ± 0.03 | 0.009 |
7 | β-ocimene | 0.002 ± 0.00 | 0.08 ± 0.00 | 0.002 ± 0.00 | 0.10 ± 0.00 | 0.009 |
8 | Careen | 0.001 ± 0.00 | 0.03 ± 0.00 | 0.001 ± 0.00 | 0.04 ± 0.00 | 0.009 |
Monoterpenoid Alcohols | ||||||
9 | Linalool | 0.008 ± 0.00 | 0.35 ± 0.00 | 0.015 ± 0.00 | 0.70 ± 0.00 | 0.009 |
10 | Eucalyptol | 0.001 ± 0.00 | 0.06 ± 0.00 | 0.002 ± 0.00 | 0.07 ± 0.00 | 0.009 |
11 | Isoborneol | 0.003 ± 0.00 | 0.15 ± 0.00 | 0.004 ± 0.00 | 0.18 ± 0.00 | 0.009 |
12 | Borneol | 0.001 ± 0.00 | 0.05 ± 0.00 | 0.001 ± 0.00 | 0.06 ± 0.00 | 0.009 |
13 | Bergamol | 0.034 ± 0.01 | 1.54 ± 0.01 | 0.015 ± 0.01 | 0.70 ± 0.01 | 0.009 |
Sesquiterpene Hydrocarbons | ||||||
14 | Caryophyllene | 0.001 ± 0.00 | 0.06 ± 0.00 | 0.002 ± 0.00 | 0.08 ± 0.00 | 0.009 |
15 | trans-α-bergamotene | 0.002 ± 0.00 | 0.09 ± 0.00 | 0.004 ± 0.00 | 0.19 ± 0.00 | 0.009 |
16 | β-bisabolene | 0.002 ± 0.00 | 0.11 ± 0.00 | 0.004 ± 0.00 | 0.18 ± 0.00 | 0.009 |
Peak | Volatile Compounds | Neapolitan Limmo (Area) | lemoncetta Locrese (Area) | p-Value |
---|---|---|---|---|
Terpens | ||||
1 | α-phellandrene | 5.17 × 106 ± 5.00 × 103 | 1.42 × 107 ± 5.00 × 104 | 0.009 |
2 | α-Pinene | 3.87 × 107 ± 1.00 × 105 | 2.82 × 108 ± 2.00 × 106 | 0.009 |
3 | β-Phellandrene | 1.08 × 108 ± 1.00 × 106 | 7.24 × 108 ± 1.50 × 106 | 0.009 |
4 | β-Pinene | 5.54 × 108 ± 2.50 × 106 | 4.34 × 109 ± 2.00 × 107 | 0.009 |
5 | β-Myrcene | 4.39 × 108 ± 3.50 × 106 | 1.66 × 109 ± 5.00 × 106 | 0.009 |
6 | D-limonene | Off the chart | Off the chart | |
7 | β-ocimene | 4.23 × 107 ± 1.50 × 105 | 1.27 × 108 ± 5.00 × 105 | 0.009 |
8 | carene | 4.99 × 106 ± 3.50 × 104 | 8.59 × 106 ± 4.00 × 104 | 0.009 |
9 | cis-β-terpineol | 1.38 × 107 ± 2.50 × 105 | 2.36 × 107 ± 3.00 × 105 | 0.009 |
10 | terpinolene | 9.53 × 106 ± 1.50 × 105 | 1.54 × 107 ± 2.00 × 105 | 0.009 |
Monoterpenoid Alcohols | ||||
11 | linalool | 6.09 × 108 ± 3.00 × 106 | 2.47 × 109 ± 2.00 × 107 | 0.009 |
12 | α-terpineol | 1.16 × 107 ± 5.00 × 104 | 2.05 × 107 ± 1.00 × 105 | 0.009 |
13 | acetic acid octyl ester | 1.31 × 107 ± 5.00 × 104 | 4.79 × 107 ± 4.00 × 105 | 0.009 |
14 | trans geraniol | 2.28 × 107 ± 3.00 × 105 | 2.78 × 107 ± 4.00 × 105 | 0.009 |
15 | bergamol | 7.27 × 109 ± 3.00 × 107 | 1.51 × 1010 ± 1.50 × 108 | 0.009 |
16 | α-terpineol acetate | 3.29 × 107 ± 3.00 × 105 | 3.44 × 107 ± 1.50 × 105 | 0.009 |
17 | nerol acetate | 5.77 × 107 ± 3.00 × 105 | 5.62 × 107 ± 1.50 × 105 | 0.009 |
18 | geraniol acetate | 7.26 × 107 ± 3.00 × 105 | 6.22 × 107 ± 5.00 × 104 | 0.009 |
Sesquiterpene Hydrocarbons | ||||
19 | α-bergamotene | 7.94 × 106 ± 6.50 × 104 | 1.12 × 107 ± 1.00 × 105 | 0.009 |
20 | caryophyllene | 3.23 × 107 ± 1.50 × 105 | 5.56 × 107 ± 2.50 × 105 | 0.009 |
21 | trans-α-bergamotene | 7.44 × 107 ± 2.00 × 105 | 1.28 × 108 ± 1.00 × 106 | 0.009 |
22 | cis-α-bisabolene | 4.58 × 106 ± 3.50 × 104 | 6.13 × 106 ± 1.00 × 104 | 0.009 |
23 | β-bisabolene | 5.74 × 107 ± 1.50 × 105 | 7.71 × 107 ± 1.50 × 105 | 0.009 |
N. | Primer Name | 5′-Sequence-3′ | GC (%) | Total Bands (nr. 80) | Total Bands (%) |
---|---|---|---|---|---|
1 | A05 | AGGGGTCTTG | 60 | 8 | 10 |
2 | AK10 | CAAGCGTCAC | 60 | 6 | 7.5 |
3 | AN10 | CTGTGTGCTC | 60 | 6 | 7.5 |
4 | AX01 | GTGTGCCGTT | 60 | 8 | 10 |
5 | AX08 | AGTATGGCGG | 60 | 12 | 15 |
6 | G07 | GAACCTGCGG | 70 | 4 | 5 |
7 | G12 | CAGCTCACGA | 60 | 9 | 11.25 |
8 | G19 | GTCAGGGCAA | 60 | 8 | 10 |
9 | E10 | CACCAGGTGA | 60 | 5 | 6.25 |
10 | E11 | GAGTCTCAGG | 60 | 5 | 6.25 |
11 | U4 | GACAGACAGG | 60 | 4 | 5 |
12 | U19 | TGGGAACGGT | 60 | 5 | 6.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cautela, D.; Balestrieri, M.L.; Savini, S.; Sannino, A.; Ferrari, G.; Servillo, L.; De Masi, L.; Pastore, A.; Castaldo, D. The Ancient Neapolitan Sweet Lime and the Calabrian Lemoncetta Locrese Belong to the Same Citrus Species. Molecules 2020, 25, 113. https://doi.org/10.3390/molecules25010113
Cautela D, Balestrieri ML, Savini S, Sannino A, Ferrari G, Servillo L, De Masi L, Pastore A, Castaldo D. The Ancient Neapolitan Sweet Lime and the Calabrian Lemoncetta Locrese Belong to the Same Citrus Species. Molecules. 2020; 25(1):113. https://doi.org/10.3390/molecules25010113
Chicago/Turabian StyleCautela, Domenico, Maria Luisa Balestrieri, Sara Savini, Anna Sannino, Giovanna Ferrari, Luigi Servillo, Luigi De Masi, Annalisa Pastore, and Domenico Castaldo. 2020. "The Ancient Neapolitan Sweet Lime and the Calabrian Lemoncetta Locrese Belong to the Same Citrus Species" Molecules 25, no. 1: 113. https://doi.org/10.3390/molecules25010113
APA StyleCautela, D., Balestrieri, M. L., Savini, S., Sannino, A., Ferrari, G., Servillo, L., De Masi, L., Pastore, A., & Castaldo, D. (2020). The Ancient Neapolitan Sweet Lime and the Calabrian Lemoncetta Locrese Belong to the Same Citrus Species. Molecules, 25(1), 113. https://doi.org/10.3390/molecules25010113