Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Light Phase Grapefruit Essential Oil
2.2. Antimicrobial Activity
2.3. Antioxidant Activity
2.4. Antiproliferative Activity of LPEO in HepG2 and HCT116 Cancer Cells
3. Materials and Methods
3.1. Materials
3.2. Preparation of Grapefruit Light Phase EO Sample
3.3. GC-MS Analyses
3.4. Antimicrobial Activity Assays
3.4.1. Microbial Growth Conditions
3.4.2. Determination of Diameter of the Inhibition Zone
3.4.3. Determination of Minimum Inhibitory Concentration (MIC)
3.5. Free Radical-Scavenging Capacity
3.5.1. DPPH Radical-Scavenging Assay
3.5.2. ABTS Radical-Scavenging Assay
3.6. Cancer Cell Culture
3.7. Antiproliferative Activity Test of LPEO
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shaaban, H.A.H.; El-Ghorab, A.H.; Takayuki, S. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Sahay, S. A review on pharmacological uses of essential oil. Int. J. Curr. Pharm. Rev. Res. 2015, 6, 71–79. [Google Scholar]
- Hardin, A.; Crandall, P.G.; Stankus, T. Essential Oils and Antioxidants Derived From Citrus By-Products in Food Protection and Medicine: An Introduction and Review of Recent Literature. J. Agric. Food Inf. 2010, 11, 99–122. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J. Appl. Microbiol. 2009, 106, 1343–1349. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. An insight into the role of citrus bioactives in modulation of colon cancer. J. Funct. Foods 2015, 13, 239–261. [Google Scholar] [CrossRef]
- Shan, Y. Comprehensive Utilization of Citrus By-Products; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- U.S. Department of Agriculture (USDA). Citrus: World Markets and Trade. Available online: http://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. (accessed on 25 November 2019).
- Nelson, E.K.; Mottern, H.H. Florida grapefruit oil. J. Ind. Eng. Chem. 1934, 26, 634–637. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L. Odour Gradients and Patterns in Volatile Emission of Different Plant Parts and Developing Fruits of Grapefruit (Citrus paradisi L.). Food Chem. 2010, 120, 984–992. [Google Scholar] [CrossRef]
- Njoroge, M.S.; Koaze, H.; Karanja, P.N.; Sawamura, M. Volatile Constituents of Redblush Grapefruit (Citrus paradisi) and Pummelo (Citrus grandis) Peel Essential Oils from Kenya. J. Agric. Food Chem. 2005, 53, 9790–9794. [Google Scholar] [CrossRef]
- Esmaeili, A.; Abednazari, S.; Abdollahzade, Y.M.; Abdollahzadeh, N.M.; Mahjoubian, R.; Tabatabaei-Anaraki, M. Peel Volatile Compounds of Apple (Malus domestica) and Grapefruit (Citrus Paradisi). J. Essent. Oil Bear. Plants 2012, 15, 794–799. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulate L.), grapefruit (Citrus paradise L.) and orange (Citrus sinesis L.) essential oils. Food Control. 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K. Antibacterial activity of grapefruit (Citrus paradisi) peel extracts. Eur. Food Res. Technol. 2001, 213, 484–487. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Perez-Álvarez, J. Antibacterial activity of lemon (Citrus limon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. J. Food Saf. 2008, 28, 567–576. [Google Scholar] [CrossRef]
- Uysal, B.; Sozmen, F.; Aktas, O.; Oksal, B.S.; Kose, E.O. Essential oil composition and antibacterial activity of the grapefruit (citrus paradisi. L) peel essential oils obtained by solvent-free microwave extraction: Comparison with hydrodistillation. Int. J. Food Sci. Technol. 2011, 46, 1455–1461. [Google Scholar] [CrossRef]
- Okunowo, W.O.; Oyedeji, O.; Afolabi, L.O.; Matanmi, E. Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities. Am. J. Plant. Sci. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.A.; Jeon, S.K.; Lee, E.J.; Shim, C.H.; Lee, I.S. Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Nat. Prod. Lett. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunesa, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Ahmed, S.; Rattanpal, H.S.; Gul, K.; Dar, R.A.; Sharma, A. Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India. J. Integr. Agric. 2019, 18, 1634–1642. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.F.; Wu, X.; Liu, R. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Diab, K.A. In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels. Asian Pac. J. Cancer Prev. 2016, 17, 3559–3567. [Google Scholar] [PubMed]
- Cristóbal-Luna, J.M.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Cevallos, G.C. Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food Chem. Toxicol. 2018, 112, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Rouseff, R.L. Characterization of aroma-impact compounds in cold-pressed grapefruit oil using time-intensity GC-olfactometry and GC-MS. Flavour Fragr. J. 2001, 16, 457–463. [Google Scholar] [CrossRef]
- Cuthrell, K.; Marchand, L.L. Grapefruit and Cancer—A Review. In Potential Health Benefits of Citrus; Patil, B.S., Brodbelt, J.S., Miller, E.G., Turner, N.D., Eds.; ACS Symposium Series: Washington, DC, USA, 2006; Volume 936, pp. 235–252. [Google Scholar]
- Berk, Z. Citrus Fruit Processing; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- César, T.B.; Manthey, J.A.; Myung, K. Minor Furanocoumarins and Coumarins in Grapefruit Peel Oil as Inhibitors of Human Cytochrome P450 3A4. J. Nat. Prod. 2009, 72, 1702–1704. [Google Scholar] [CrossRef]
- Uckoo, R.M.; Jayaprakasha, G.K.; Balasubramaniam, V.M.; Patil, B.S. Grapefruit (Citrus paradisi Macfad) phytochemicals composition is modulated by household processing techniques. J. Food Sci. 2012, 77, C921–C926. [Google Scholar] [CrossRef]
- Ko, J.H.; Arfuso, F.; Sethi, G.; Ahn, K.S. Pharmacological Utilization of Bergamottin, Derived from Grapefruits, in Cancer Prevention and Therapy. Int. J. Mol. Sci. 2018, 19, 4048. [Google Scholar] [CrossRef] [Green Version]
- Pino, J.; Acevedo, A.; Rabelo, J.; González, C.; Escandón, J. Chemical Composition of Distilled Grapefruit Oil. J. Essent. Oil Res. 1999, 11, 75–76. [Google Scholar] [CrossRef]
- Busing, A.; Drotleff, A.M.; Ternes, W. Identification of α-tocotrienolquinone epoxides and development of an efficient molecular distillation procedure for quantitation of α-tocotrienol oxidation products in food matrices by high-performance liquid chromatography with diode array and fluorescence detection. J. Agric. Food Chem. 2012, 60, 8302–8313. [Google Scholar]
- Ketenoglu, O.; Ozkan, K.S.; Yorulmaz, A.; Tekin, A. Molecular distillation of olive pomace oil - Multiobjective optimization for tocopherol and squalene. LWT Food Sci. Technol. 2018, 91, 198–202. [Google Scholar] [CrossRef]
- Mezza, G.N.; Borgarello, A.V.; Daguero, J.D.; Pramparo, M.C. Obtention of Rosemary Essential Oil Concentrates by Molecular Distillation and Free Radical Scavenging Capacity Analysis. Int. J. Food. Eng. 2013, 9, 147–153. [Google Scholar] [CrossRef]
- Martins, P.F.; Medeiros, H.H.R.; Sbaite, P.; Maciel, M.R.W. Enrichment of oxyterpenes from orange oil by short path evaporation. Sep. Purif. Technol. 2013, 116, 385–390. [Google Scholar] [CrossRef]
- Wilson, C.W.; Shaw, P.E. Quantitative Composition of Cold-Pressed Grapefruit Oil. J. Agric. Food Chem. 1978, 26, 1432–1434. [Google Scholar] [CrossRef]
- Ou, M.C.; Liu, Y.H.; Sun, Y.W.; Chan, C.F. The composition, antioxidant and antibacterial activities of cold-pressed and distilled essential oils of Citrus paradise and Citrus grandis (L.) Osbeck. Evid. Based Complement. Altern. Med. 2015, 2015, 804091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochs, M.M.; McCusker, M.P.; Bains, M.; Hancock, R.E. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob. Agents. Chemother. 1999, 43, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Cohena, S.M.; Eisenbrandb, G.; Fukushimac, S.; Gooderhamd, N.J.; Guengeriche, F.P.; Hechtf, S.S.; Rietjensg, I.M.C.M.; Bastakih, M.; Davidsenh, J.M.; Harmanh, C.L.; et al. FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food Chem. Toxicol. 2019, 124, 192–218. [Google Scholar] [CrossRef]
- Hashim, N.A.; Ahmad, F.; Jani, N.A.; Susanti, D. In vitro Antioxidant, Antityrosinase, Antibacterial and Cytotoxicity Activities of the Leaf and Stem Essential Oil from Piper magnibaccum C. DC. J. Essent. Oil Bear. Plants 2017, 20, 223–232. [Google Scholar] [CrossRef]
- Torresalvarez, C.; González, A.N.; Rodríguez, J.; Castillo, S.; Leosrivas, C.; Báezgonzález, J.G. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA J. Food 2017, 15, 129–135. [Google Scholar]
- Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Comm. 1999, 36, 47–50. [Google Scholar] [CrossRef]
- Liu, K.; Deng, W.; Hu, W.; Cao, S.; Zhong, B.; Chun, J. Extraction of ‘Gannanzao’ Orange Peel Essential Oil by Response Surface Methodology and its Effect on Cancer Cell Proliferation and Migration. Molecules 2019, 24, 499. [Google Scholar] [CrossRef] [Green Version]
- Manassero, C.A.; Girotti, J.R.; Mijailovsky, S.; García de Bravo, M.; Polo, M. In vitro comparative analysis of antiproliferative activity of essential oil from mandarin peel and its principal component limonene. Nat. Prod. Res. 2013, 27, 1475–1478. [Google Scholar] [CrossRef]
- Mukhtar, Y.M.; Adu-Frimpong, M.; Xu, X.; Yu, J. Biochemical significance of limonene and its metabolites: Future prospects for designing and developing highly potent anticancer drugs. Biosci. Rep. 2018, 38, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar] [PubMed]
- Rota, C.; Carraminana, J.J.; Burillo, J.; Herrera, A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J. Food Prot. 2004, 67, 1252–1256. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mei, X.; Jin, Y.; Kim, E.H.; Yang, Z.; Tua, Y. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity. J. Sci. Food. Agric. 2014, 94, 316–321. [Google Scholar] [CrossRef]
- Telesa, S.; Pereirab, J.A.; Oliveirad, L.M.; Malheirob, R.; Machadoc, S.S.; Lucchesec, A.M.; Silvaa, F. Organic and mineral fertilization influence on biomass and essential oil production, composition and antioxidant activity of Lippiaoriganoides H.B.K. Ind. Crops Prod. 2014, 59, 169–176. [Google Scholar] [CrossRef]
Sample Availability: Sample of the compound LPEO is available from the authors. |
No. | RIa | Compounds | Composition (%) |
---|---|---|---|
1 | 938 | α-Pinene | 0.76 |
2 | 956 | Camphene | 0.01 |
3 | 977 | Sabinene | 0.60 |
4 | 985 | β-Pinene | 0.05 |
5 | 992 | β-Myrcene | 2.16 |
6 | 1007 | Octanal | 0.36 |
7 | 1049 | Limonene | 93.33 |
8 | 1053 | β-Ocimene | 0.02 |
9 | 1103 | Linalool | 0.12 |
10 | 1108 | Nonanal | 0.05 |
11 | 1127 | trans-p-Mentha-2,8-dien-1-ol | 0.16 |
12 | 1137 | cis-Limonene oxide | 0.43 |
13 | 1141 | trans-Limonene oxide | 0.33 |
14 | 1155 | Citronellal | 0.04 |
15 | 1199 | α-Terpineol | 0.13 |
16 | 1208 | Decanal | 0.19 |
17 | 1251 | Carvone | 0.41 |
18 | 1377 | α-Copaene | 0.13 |
19 | 1388 | β-Cubebene | 0.14 |
20 | 1421 | Caryophyllene | 0.20 |
21 | 1457 | Humulene | 0.03 |
22 | 1482 | Germacrene D | 0.01 |
23 | 1519 | δ-cadinene | 0.04 |
24 | 1566 | Caryophyllene oxide | 0.04 |
Total | 99.74 | ||
Monoterpene hydrocarbons | 96.93 | ||
Oxygenated monoterpenoids | 1.62 | ||
Sesquiterpene hydrocarbons | 0.55 | ||
Oxygenated sesquiterpenes | 0.04 | ||
others | 0.60 |
Bacterial Strain | Diameter of Inhibition Zone (mm) | MIC (µL /mL) |
---|---|---|
Bacillus subtilis (G+) | 35.59 ± 1.06 a | 0.78 |
Staphylococcus aureus (G+) | 24.34 ± 0.52 c | 6.25 |
Escherichia coli (G-) | 26.86 ± 0.17 b | 6.25 |
Salmonella typhimurium (G-) | 21.70 ± 0.21 d | 12.50 |
Pseudomonas aeruginosa (G-) | 8.57 ± 0.13 e | 25.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Liu, K.; Cao, S.; Sun, J.; Zhong, B.; Chun, J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020, 25, 217. https://doi.org/10.3390/molecules25010217
Deng W, Liu K, Cao S, Sun J, Zhong B, Chun J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules. 2020; 25(1):217. https://doi.org/10.3390/molecules25010217
Chicago/Turabian StyleDeng, Weihui, Ke Liu, Shan Cao, Jingyu Sun, Balian Zhong, and Jiong Chun. 2020. "Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation" Molecules 25, no. 1: 217. https://doi.org/10.3390/molecules25010217
APA StyleDeng, W., Liu, K., Cao, S., Sun, J., Zhong, B., & Chun, J. (2020). Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules, 25(1), 217. https://doi.org/10.3390/molecules25010217