Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis of Fat Content
2.2.2. Analysis of Antioxidant Properties
2.2.2.1. Extraction Process
2.2.2.2. Antioxidant Properties and Total Polyphenols Content
2.2.3. Analysis of Profile and Content of Polyphenols
2.2.4. Analysis of Tocopherols Content
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Fat Content
3.2. Antioxidant Potential with Total Polyphenol Content
3.3. Profile and Content of Polyphenols
3.4. Profile and Content of Tocopherols
3.5. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Persic, M.; Mikulic-Petkovsek, M.; Slatnar, A.; Solar, A.; Veberic, R. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chem. 2018, 252, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, G.; Gökmen, V. Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Res. Int. 2019, 116, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Pelvan, E.; Olgunb, E.O.; Karadağa, A.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Pelvan, E.; Alasalvar, C.; Uzman, S. Effects of roasting on the antioxidant status and phenolic profiles of commercial Turkish hazelnut varieties (Corylus avellana L.). J. Agric. Food Chem. 2012, 60, 1218–1223. [Google Scholar] [CrossRef]
- Lainas, K.; Alasalvar, C.; Bolling, B.W. Effects of roasting on proanthocyanidin contents of Turkish Tombul hazelnut and its skin. J. Funct. Foods 2016, 23, 647–653. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.-Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Pelvan Pelitli, E.; Janiak, M.A.; Amarowicz, R.; Alasalvar, C. Protein precipitating capacity and antioxidant activity of Turkish Tombul hazelnut phenolic extract and its fractions. Food Chem. 2017, 218, 584–590. [Google Scholar] [CrossRef]
- Rusu, M.E.; Fizeșan, I.; Pop, A.; Gheldiu, A.M.; Mocan, A.; Crișan, G.; Vlase, L.; Loghin, F.; Popa, D.S.; Tomuta, I. Enhanced recovery of antioxidant compounds from hazelnut (Corylus avellana L.) Involucre based on extraction optimization: Phytochemical profile and biological bctivities. Antioxidants 2019, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Granata, M.U.; Bracco, F.; Catoni, R.; Cavalloro, V.; Martino, E. Secondary metabolites profile and physiological leaf traits in wild and cultivated Corylus avellana under different nutritional status. Nat. Prod. Res. 2019, 30, 1–8. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the degree of maturity of walnuts (Juglans regia L.) and their variety on the antioxidant potential and the content of tocopherols and polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [Green Version]
- AOAC, Official Method 948.22. Fat (crude) in nuts and nut products. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xianggun, G.; Ohlander, M.; Jeppson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar]
- Kapusta, I.; Cebulak, T.; Oszmiański, J. Characterization of polish wines produced from the interspecific hybrid grapes grown in south-east Poland. Eur. Food Res. Technol. 2018, 244, 441–455. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant properties, profile of polyphenolic compounds and tocopherol content in various walnut (Juglans regia L.) varieties”. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Savage, G.P.; McNeil, D.L.; Dutta, P.C. Lipid composition and oxidative stability of oils in hazelnuts (Corylus avellana L.) grown in New Zealand. J. Am. Oil Chem Soc. 1997, 74, 755–759. [Google Scholar] [CrossRef]
- Koyuncu, M.A. Change of fat content and fatty acid composition of Turkish hazelnuts (Corylus avellana L.) during storage. J. Food Qual. 2004, 27, 304–309. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Citova, R.M.; Oliveira, B.P.P. Characterization of several hazelnut (Corylus avellana L.) cultivars based in chemical, fatty acid and sterol composition. Eur. Food Res. Technol. 2006, 222, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Kornsteiner, M.; Karl-Heinz, W.; Ibrahim, E. Tocopherols and phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Alasalvar, C.; Hoffman, A.M.; Shahidi, F. Antioxidant activities and phytochemicals in hazelnut (Corylus avellana L.) and hazelnut by-products. In Tree Nuts Composition, Phytochemicals, and Health Effects; Alasalvar, C., Shahidi, F., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 215–236. [Google Scholar]
- Alasalvar, C.; Karamac, M.; Amarowicz, R.; Shahidi, F. Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. J. Agric. Food Chem. 2006, 54, 4826–4832. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Garrido, I.; Lebron-Aguilar, R.; Gomez-Cordoves, M.C.; Rybarczyk, A.; Amarowicz, R.; Bartolome, B. Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. J. Agric. Food Chem. 2009, 57, 10590–10599. [Google Scholar] [CrossRef] [PubMed]
- Marzocchi, S.; Pasini, F.; Verardo, V.; Ciemniewska-Żytkiewicz, H.; Caboni, M.F.; Romani, S. Effects of different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus avellana L. var. Katalonski). LWT-Food Sci. Technol. 2017, 77, 440–448. [Google Scholar] [CrossRef]
- Bizjak, J.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Changes in primary metabolites and polyphenols in the peel of “Braeburn” apples (Malus domestica Borkh.) during advanced maturation. J. Agric. Food Chem. 2013, 61, 10283–10292. [Google Scholar] [CrossRef] [PubMed]
- Ballistreri, G.; Arena, E.; Fallico, B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules 2009, 14, 4358–4369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S.; Karathanos, V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Machado de Souza, M.G.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes a systematic review. Nutritiens 2017, 9, 1311. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, C.; Shahidi, F.; Ohshima, T.; Wanasundara, U.; Yurttas, H.C.; Liyanapathirana, C.M.; Rodrigues, F.B. Turkish Tombul Hazelnut (Corylus avellana L.). 2. Lipid characteristics and oxidative stability. J. Agric. Food Chem. 2003, 51, 3797–3805. [Google Scholar] [CrossRef]
Sample Availability: Samples of the hazelnuts are available from the authors. |
Cultivar | ABTS | DPPH | FRAP | Total Polyphenols |
---|---|---|---|---|
[mmol Trolox/100g d.m.] | [mg/100g d.m.] | |||
July | ||||
Kataloński | 2.14 c ± 0.83 | 46.71 h ± 1.27 | 2.06 f ± 0.13 | 438.6 h ± 1.11 |
Vebba Cenny | 18.60 e ± 1.91 | 58.82 k ± 1.91 | 3.64 g ± 0.17 | 585.6 i ± 2.39 |
Barceloński | 14.74 d ± 2.19 | 56.58 j ± 1.34 | 6.16 j ± 0.11 | 1007.0 k ± 4.79 |
Lamberta | 27.76 g ± 1.36 | 60.13 k ± 3.52 | 3.84 i ± 0.19 | 877.1 j ± 0.64 |
Cosford | 66.93 h ± 3.34 | 65.91 l ± 1.02 | 7.52 k ± 0.17 | 1704.9 l ± 2.29 |
Olbrzym z Halle | 24.12 f ± 0.65 | 53.04 i ± 1.05 | 3.29 g ± 0.06 | 462.3 h ± 0.66 |
August | ||||
Kataloński | 0.83 a ± 0.03 | 5.42 de ± 0.15 | 0.26 bc ± 0.02 | 196.0 f ± 0.70 |
Vebba Cenny | 1.44 a ± 0.08 | 7.71 f ± 0.29 | 0.47 d ± 0.03 | 195.3 f ± 0.27 |
Barceloński | 0.23 a ± 0.18 | 4.72 cd ± 0.17 | 0.19 ab ± 0.01 | 103.6 bcd ± 0.15 |
Lamberta | 0.73 a ± 0.11 | 7.56 f ± 0.16 | 0.41 cd ± 0.02 | 121.7 de ± 0.32 |
Cosford | 4.14 b ± 0.13 | 11.42 g ± 0.14 | 1.07 e ± 0.04 | 385.9 g ± 1.11 |
Olbrzym z Halle | 0.65 a ± 0.12 | 7.12 ef ± 0.13 | 0.39 cd ± 0.00 | 140.4 e ± 0.15 |
September | ||||
Kataloński | 0.47 a ± 0.13 | 5.45 de ± 0.17 | 0.30 bc ± 0.01 | 91.6 abc ± 0.18 |
Vebba Cenny | 0.42 a ± 0.15 | 0.36 a ± 0.01 | 0.08 a ± 0.01 | 68.5 a ± 0.20 |
Barceloński | 0.55 a ± 0.07 | 2.96 bc ± 0.02 | 0.15 ab ± 0.00 | 85.9 abc ± 0.44 |
Lamberta | 0.69 a ± 0.10 | 0.71 a ± 0.04 | 0.18 ab ± 0.01 | 112.5 cd ± 0.48 |
Cosford | 1.83 a ± 0.06 | 10.37 g ± 0.05 | 1.00 e ± 0.05 | 141.4 e ± 0.38 |
Olbrzym z Halle | 0.43 a ± 0.06 | 2.04 ab ± 0.27 | 0.30 bc ± 0.01 | 86.1 ab ± 0.03 |
Two-Factor ANOVA-p | ||||
Factor 1 | <0.001 | <0.001 | <0.001 | <0.001 |
Factor 2 | <0.001 | <0.001 | <0.001 | <0.001 |
Factor 1 × Factor 2 | <0.001 | <0.001 | <0.001 | <0.001 |
Compounds | Rt | [M − H] m/z | ||
---|---|---|---|---|
min | MS | MS/MS | ||
1 | Gallic acid | 1.10 | 169 | 125 |
2 | Chlorogenic acid | 1.91 | 353 | 191 |
3 | Digalloyl ester of procyanidin dimer | 2.36 | 881 | 577.289 |
4 | (+) catechin | 2.89 | 289 | 137 |
5 | Digalloyl ester of procyanidin dimer | 3.34 | 881 | 577.289 |
6 | Ellagic acid hexoside | 3.81 | 463 | 301 |
7 | Procyanidin dimer | 4.05 | 577 | 289 |
8 | Ellagic acid hexoside | 4.16 | 463 | 301 |
9 | Ellagic acid hexoside | 4.24 | 463 | 301 |
10 | Quercetin hexoside | 4.62 | 463 | 301 |
11 | (−) epicatechin gallate | 4.72 | 441 | 331.289 |
12 | Valenoic acid dilactone | 5.13 | 469 | 451.425 |
13 | Unspecified derivative of caffeic acid | 5.33 | 563 | 179 |
14 | Kaempferol hexoside | 5.40 | 447 | 285 |
15 | Ellagic acid pentoside | 6.05 | 433 | 301 |
Compound | Rt | [M − H] m/z | Cultivar | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min | MS | Kataloński | Vebba Cenny | Barceloński | Lamberta | Cosford | Olbrzym z Halle | Kataloński | Vebba Cenny | Barceloński | Lamberta | Cosford | Olbrzym z Halle | |
July | August | |||||||||||||
1 | 1.10 | 169 | 85.80 ± 9.14 | 24.77 ± 2.88 | nd | 84.46 ± 2.23 | 76.56 ± 3.27 | nd | 159.43 ± 2.78 | nd | nd | 213.20 ± 4.12 | 118.55 ± 1.97 | nd |
2 | 1.91 | 353 | nd | 109.85 ± 6.07 | nd | 257.23 ± 8.21 | 154.91 ± 5.16 | 17.99 ± 1.08 | 23.58 ± 1.18 | 42.78 ± 1.81 | 29.37 ± 1.40 | 49.88 ± 2.35 | 30.37 ± 1.63 | 67.12 ± 3.54 |
3 | 2.36 | 881 | nd | 177.32 ± 5.55 | 441.39 ± 6.23 | nd | 275.09 ± 4.87 | 21.601.25 | 20.90 ± 1.12 | 10.04 ± 0.73 | nd | 19.58 ± 1.28 | nd | 25.90 ± 1.63 |
4 | 2.89 | 289 | 136.45 ± 11.40 | 585.05 ± 19.10 | 5806.03 ± 88.20 | 398.87 ± 7.78 | 1729.41 ± 35.50 | 29.11 ± 1.33 | 62.88 ± 2.04 | 10.99 ± 0.81 | 67.47 ± 2.12 | nd | nd | 46.09 ± 2.78 |
5 | 3.34 | 881 | nd | nd | nd | nd | 64.61 ± 2.40 | nd | nd | nd | nd | nd | nd | nd |
6 | 3.81 | 463 | 124.90 ± 6.89 | 100.89 ± 4.95 | nd | 195.26 ± 2.55 | 156.90 ± 4.76 | 29.45 ± 2.11 | nd | nd | nd | nd | nd | nd |
7 | 4.05 | 577 | 152.42 ± 8.28 | 141.95 ± 5.93 | nd | 147.21 ± 2.26 | 141.66 ± 3.72 | nd | nd | nd | nd | nd | nd | nd |
8 | 4.16 | 463 | 83.19 ± 2.28 | nd | nd | 83.41 ± 0.45 | 118.55 ± 4.35 | nd | nd | nd | nd | nd | dd | nd |
9 | 4.24 | 463 | 129.17 ± 5.16 | 124.52 ± 3.12 | nd | nd | 183.16 ± 5.55 | nd | nd | nd | nd | nd | nd | nd |
10 | 4.62 | 463 | 1629.91 ± 28.30 | 2709.40 ± 41.26 | nd | 2050.73 ± 77.80 | 2528.15 ± 46.70 | nd | nd | nd | nd | 52.07 ± 1.22 | 99.84 ± 2.61 | nd |
11 | 4.72 | 441 | 562.25 ± 11.40 | 489.42 ± 10.04 | 115.18 ± 2.03 | 409.47 ± 8.60 | 609.78 ± 6.24 | nd | 121.98 ± 5.46 | 105.64 ± 1.91 | nd | 94.33 ± 3.30 | nd | 103.06 ± 4.35 |
12 | 5.13 | 469 | nd | 489.02 ± 9.06 | 114.002.98 | nd | 164.85 ± 3.49 | nd | nd | 105.00 ± 2.07 | nd | nd | nd | nd |
13 | 5.33 | 563 | 187.60 ± 6.35 | 235.20 ± 9.72 | nd | nd | 169.06 ± 3.35 | nd | nd | 143.21 ± 3.26 | nd | nd | nd | nd |
14 | 5.40 | 447 | 1149.27 ± 58.70 | 1876.80 ± 54.30 | 777.91 ± 12.30 | 2371.45 ± 4.29 | 1710.09 ± 30.40 | 304.97 ± 7.12 | 135.94 ± 3.06 | nd | 31.58 ± 2.08 | 483.46 ± 5.55 | 225.52 ± 4.69 | 148.19 ± 5.67 |
15 | 6.05 | 433 | 426.53 ± 12.40 | 502.15 ± 6.96 | 406.17 ± 5.67 | 719.05 ± 7.52 | 930.45 ± 22.01 | 9.05 ± 0.85 | 25.38 ± 1.49 | nd | 13.43 ± 1.15 | 56.06 ± 3.34 | 29.24 ± 1.04 | nd |
TOTAL | 4667.48 | 7366.00 | 8893.08 | 6717.13 | 9013.24 | 512.17 | 550.09 | 312.01 | 141.85 | 968.58 | 503.53 | 390.35 | ||
LSD | 14.57 | 13.76 | 11.67 | 12.16 | 12.11 | 2.29 | 2.44 | 1.76 | 1.68 | 3.02 | 2.38 | 3.59 |
Compound | Rt | [M − H] m/z | Cultivar | |||||
---|---|---|---|---|---|---|---|---|
min | MS | Kataloński | Vebba Cenny | Barceloński | Lamberta | Cosford | Olbrzym z Halle | |
September | ||||||||
1 | 1.10 | 169 | 28.29 ± 1.12 | nd | 95.92 ± 5.38 | 36.40 ± 1.28 | nd | nd |
2 | 1.91 | 353 | 33.63 ± 2.33 | 41.70 ± 3.54 | 106.53 ± 6.07 | 19.61 ± 0.99 | 38.73 ± 2.01 | 32.91 ± 2.22 |
3 | 2.36 | 881 | nd | nd | nd | nd | nd | nd |
4 | 2.89 | 289 | 21.57 ± 1.98 | 53.72 ± 4.12 | 91.64 ± 4.89 | 37.12 ± 2.12 | nd | 59.04 ± 1.55 |
5 | 3.34 | 881 | nd | nd | nd | nd | nd | nd |
6 | 3.81 | 463 | nd | nd | nd | nd | nd | nd |
7 | 4.05 | 577 | nd | nd | nd | nd | nd | nd |
8 | 4.16 | 463 | nd | nd | nd | nd | nd | nd |
9 | 4.24 | 463 | nd | nd | nd | nd | nd | nd |
10 | 4.62 | 463 | 150.12 ± 4.91 | nd | nd | 97.44 ± 3.87 | 138.67 ± 3.22 | 79.10 ± 3.03 |
11 | 4.72 | 441 | nd | nd | nd | nd | nd | nd |
12 | 5.13 | 469 | nd | nd | nd | nd | nd | nd |
13 | 5.33 | 563 | nd | nd | nd | nd | nd | nd |
14 | 5.40 | 447 | 311.56 ± 7.78 | 234.80 ± 6.27 | 372.31 ± 7.11 | 247.66 ± 5.05 | 360.02 ± 6.92 | 292.78 ± 6.63 |
15 | 6.05 | 433 | nd | nd | 37.49 ± 2.98 | 31.85 ± 0.96 | nd | nd |
TOTAL | 545.17 | 330.22 | 803.42 | 470.07 | 537.42 | 463.84 | ||
LSD | 3.62 | 4.64 | 5.88 | 2.37 | 4.05 | 3.35 |
Cultivar | α-Tocopherol | γ-Tocopherol | Sum β and δ-Tocopherol | Total | |||
---|---|---|---|---|---|---|---|
mg/kg d.m. | % | mg/kg d.m. | % | mg/kg d.m. | % | mg/kg d.m. | |
July | |||||||
Kataloński | 5.50 bc ± 0.16 | 78.6 | 0.50 cd ± 0.17 | 7.1 | 1.00 a ± 0.00 | 14.3 | 7.00 ab ± 0.31 |
Vebba Cenny | 1.17 a ± 0.17 | 46.7 | 0.17 ab ± 0.08 | 6.6 | 1.33 a ± 0.00 | 53.3 | 2.50 a ± 0.17 |
Barceloński | 2.57 ab ± 0.10 | 60.6 | 0.50 cd ± 0.16 | 11.8 | 1.17 a ± 0.11 | 27.6 | 4.23 a ± 0.30 |
Lamberta | 1.33 a ± 0.32 | 70.0 | 0.00 a ± 0.00 | 0.0 | 0.83 a ± 0.14 | 30.0 | 2.67 a ± 0.33 |
Cosford | 2.33 ab ± 0.21 | 72.0 | 0.00 a ± 0.00 | 0.0 | 0.83 a ± 0.11 | 28.0 | 3.16 a ± 0.13 |
Olbrzym z Halle | 1.33 a ± 0.01 | 80.0 | 0.00 a ± 0.00 | 0.0 | 0.33 a ± 0.01 | 20.0 | 1.67 a ± 0.01 |
August | |||||||
Kataloński | 4.83 abc ± 1.15 | 19.7 | 0.33 bc ± 0.03 | 1.3 | 20.00 c ± 0.33 | 79.0 | 25.33 c ± 1.33 |
Vebba Cenny | 2.00 ab ± 0.00 | 39.6 | 0.83e ± 0.07 | 16.5 | 2.27 a ± 0.27 | 44.9 | 5.05 ab ± 0.13 |
Barceloński | 3.67 ab ± 0.01 | 68.7 | 0.50 cd ± 0.07 | 9.4 | 1.17 a ± 0.12 | 21.9 | 5.33 ab ± 0.50 |
Lamberta | 2.50 ab ± 0.07 | 51.7 | 1.33 f ± 0.01 | 27.6 | 1.00 a ± 0.00 | 20.7 | 4.83 ab ± 0.17 |
Cosford | 7.50 c ± 0.50 | 72.6 | 0.67 de ± 0.02 | 6.4 | 2.17 a ± 0.17 | 21 | 10.33 b ± 0.83 |
Olbrzym z Halle | 2.50 ab ± 0.18 | 63.6 | 0.00 a ± 0.00 | 0.0 | 1.43 a ± 0.36 | 36.4 | 3.93 a ± 0.35 |
September | |||||||
Kataloński | 129.33 g ± 1.00 | 77.2 | 1.50 g ± 0.17 | 0.9 | 36.67 ± 5.67 | 21.9 | 167.50 g ± 6.50 |
Vebba Cenny | 37.00 d ± 0.05 | 28.5 | 36.33 h ± 0.33 | 27.2 | 57.33 f ± 0.67 | 37.0 | 129.67 e ± 1.00 |
Barceloński | 72.67 e ± 7.01 | 83.8 | 0.00 a ± 0.00 | 0.0 | 14.00 b ± 0.31 | 16.1 | 86.67 d ± 7.33 |
Lamberta | 133.67 h ± 2.67 | 82.5 | 0.00 a ± 0.00 | 0.0 | 28.33 d ± 4.67 | 17.5 | 162.00 g ± 6.62 |
Cosford | 126.33 g ± 4.67 | 86.7 | 2.83 h ± 0.17 | 1.9 | 16.50 b ± 0.83 | 11.3 | 145.67 f ± 5.83 |
Olbrzym z Halle | 77.67 f ± 0.01 | 43.7 | 53.00 i ± 0.31 | 29.8 | 47.00 e ± 0.30 | 26.4 | 177.67 h ± 0.83 |
Two-Factor ANOVA-p | |||||||
Factor 1 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Factor 2 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Factor 1 × Factor 2 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pycia, K.; Kapusta, I.; Jaworska, G. Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date. Molecules 2020, 25, 43. https://doi.org/10.3390/molecules25010043
Pycia K, Kapusta I, Jaworska G. Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date. Molecules. 2020; 25(1):43. https://doi.org/10.3390/molecules25010043
Chicago/Turabian StylePycia, Karolina, Ireneusz Kapusta, and Grażyna Jaworska. 2020. "Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date" Molecules 25, no. 1: 43. https://doi.org/10.3390/molecules25010043
APA StylePycia, K., Kapusta, I., & Jaworska, G. (2020). Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date. Molecules, 25(1), 43. https://doi.org/10.3390/molecules25010043