Association of mRNA Levels of IL6, MMP-8, GSS in Saliva and Pyelonephritis in Children
Abstract
:1. Introduction
2. Results
2.1. Salivary mRNA Levels of IL-6, MMP-8 and GSS
2.2. Comparison between the Investigated Salivary Biomarkers and Urine Analysis Indicators
2.3. Correlation between Salivary Biomarkers and Para-Clinical Indicators from Urine Assay
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Participants
- Participants between 0–18 years of age.
- Children with established pyelonephritis.
- A control group of children without any common health disorders.
- Patients of pyelonephritis older than 18 of age.
- Patients of clinical manifestation of periodontal diseases, respectively children with loss of bone tissue, loss of clinical attachment level or formation of periodontal pockets.
- At the time of sample collection, patients do not suffer from other inflammatory diseases.
- Do not suffer from autoimmune disorders or malignant diseases.
- No anamnestic data of allergic reactions’ background
- Do not use immunosuppressive drugs, no corticosteroids’ application, no antihistamins’ medication.
4.3. Salivary Sample Collection
4.4. Urine Sample Collection
4.5. Total RNA Extraction from Saliva and RT-qPCR Analysis
4.6. Para-Clinical Parameters of Proteins, Blood and Leucocytes Measurement in Urine Sample
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malamud, D. Salivary diagnostics: The future is now. J. Am. Dent. Assoc. 2006, 137, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, X.; St John, M.A.; Wong, D.T. RNA profiling of cell-free saliva using microarray technology. J. Dent. Res. 2004, 83, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Jingyi, L.; Yixiang, D. Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol. 2012, 48, 569–577. [Google Scholar] [CrossRef]
- Nunes, L.A.; Brenzikofer, R.; Macedo, D.V. Reference intervals for saliva analytes collected by a standardized method in a physically active population. Clin. Biochem. 2011, 44, 1440–1444. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Cheng, X.Q.; Li, J.Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Bliznakova, D. Dialogue between Parent and Doctor with Care of Child’s Kidneys, 1st ed.; Medical university of Varna: Varna, Bulgaria, 2016; ISBN 978-619-221-017-5. [Google Scholar]
- Bliznakova, D. Diagnostic Approach in Children with Urinary Tract Infections. Bulg. Med. 1998, 6, 24–26. [Google Scholar]
- Bliznakova, D. Practical Approach in Cases of Urinal Infections in Child’s Age. The Role of the General Practitioner. Common Med. 2013, 15, 49–51. [Google Scholar]
- Kunin, C.M. Urinary Tract Infections. Detection, Prevention, and Management, 5th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 1997; pp. 5–419. [Google Scholar]
- Stamm, W.E.; McKevitt, M.; Roberts, P.L.; White, N.J. Natural history of recurrent urinary tract infections in women. Rev. Infect. Dis. 1991, 13, 77–84. [Google Scholar] [CrossRef]
- Lundstedt, A.C.; McCarthy, S.; Gustafsson, M.C.U.; Godaly, G.; Jodal, U. A Genetic Basis of Susceptibility to Acute Pyelonephritis. PLoS ONE 2007, 2, e825. [Google Scholar] [CrossRef]
- Bliznakova, D.; Zheleva, M.; Pavlova, D. Diagnostic and Therapeutic Problems of Acute Renal Failure in Childhood. Scr. Sci. Med. 2000, 32, 45–46. [Google Scholar]
- Bliznakova, D. Proteinuria in Child’ Age. Actual Nephrol. 2002, 2, 23–27. [Google Scholar]
- Zivkovic, M.; Stojkovic, L.; Spasojevic-Dimitrijeva, B. Genetic Factors Underlying Susceptibility to Acute Pyelonephritis and Post-infectious Renal Damage. In Recent Advances in the Field of Urinary Tract Infections, 1st ed.; Nelius, T., Ed.; IntechOpen: London, UK, 2013; pp. 1–23. [Google Scholar] [CrossRef]
- Jackobson, S.H.; Eklof, O.; Eriksson, C.G.; Lins, L.E.; Tidgren, B.; Winberg, J. Development of hypertension and ureamia after pyelonephritis in childhood: 27 year follow-up. BMJ 1989, 299, 703–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, D. The management of suspected urinary tract infection in general practice. Br. J. Gen. Pr. 1990, 40, 399–402. [Google Scholar]
- Elder, J.S. Urinary tract infection. In Nelson Textbook of Pediatrics, 19th ed.; Kliegman, R.M., Stanton, B.F., St. Geme, J.W., Schor, N.F., Behrman, R.E., Eds.; Saunders: Philadelphia, PA, USA, 2011; pp. 1829–1838. [Google Scholar]
- Deville, W.L.; Yzermans, J.C.; van Duijn, N.P.; Bezemer, P.D.; van der Windt DABouter, L.M. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy. BMC Urol. 2004, 4, 4. [Google Scholar] [CrossRef]
- Simerville, J.A.; Maxted, W.C.; Pahira, J.J. Urinalysis: A Comprehensive Review. Am. Fam. Physician 2005, 71, 1153–1162. [Google Scholar]
- Schafer, C.A.; Baum, J.J.; Yakob, M.; Lima, P.; Camargo, P.; Wong, D.T. Saliva diagnostics: Utilizing oral fluids to determine health status. Monogr. Oral Sci. 2014, 24, 88–98. [Google Scholar] [CrossRef]
- Baum, B.J.; Yates, J.R.; Srivastava, S.; Wong, D.T.; Melvin, J.E. Scientific frontiers: Emerging technologies for salivary diagnostics. Adv. Dent. Res. 2011, 23, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.W.; Mauk, M.G.; Liu, C.; Qiu, X.; Thompson, J.A.; Chen, D.; Malamud, D.; Abrams, W.R.; Bau, H.H. Point-of-care oral-based diagnostics. Oral Dis. 2011, 17, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.T. Salivomics. J. Am. Dent. Assoc. 2012, 143, 19S–24S. [Google Scholar] [CrossRef]
- Lee, Y.H.; Wong, D.T. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. 2009, 22, 241–248. [Google Scholar]
- Segal, A.; Wong, D.T. Salivary diagnostics: Enhancing disease detection and making medicine better. Eur. J. Dent. Educ. 2008, 12, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Nechemia-Arbely, Y.; Barkan, D.; Pizov, G.; Shriki, A.; Rose-John, S.; Galun, E.; Axelrod, J.H. IL-6/IL-6R axis plays a critical role in acute kidney injury. J. Am. Soc. Nephrol. 2008, 19, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Zhang, X.; Hong, Q.; Shao, F.; Shang, X.; Fu, B.; Feng, Z.; Lin, H.; Wang, J.; Shi, S.; et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation. Nephrol. Dial. Transplant. 2008, 23, 1861–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, W.C.; Wilson, C.L.; Lopez-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef]
- Tan, R.J.; Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Ren. Physiol. 2012, 302, F1351–F1361. [Google Scholar] [CrossRef] [Green Version]
- Sirniö, P.; Tuomisto, A.; Tervahartiala, T.; Sorsa, T.; Klintrup, K.; Karhu, T.; Herzig, K.H.; Mäkelä, J.; Karttunen, T.J.; Salo, T.; et al. High serum MMP-8 levels are associated with decreased survival and systemic inflammation in colorectal cancer. Br. J. Cancer 2018, 119, 213–219. [Google Scholar] [CrossRef]
- Vysakh, A.; Raji, N.R.; Suma, D.; Jayesh, K.; Jyothis, M.; Latha, M.S. Role of antioxidant defence, renal toxicity markers and inflammatory cascade in disease progression of acute pyelonephritis in experimental rat model. Microb. Pathog. 2017, 109, 189–194. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Szulimowska, J.; Taranta-Janusz, K.; Werbel, K.; Wasilewska, A.; Zalewska, A. Salivary FRAP as A Marker of Chronic Kidney Disease Progression in Children. Antioxidants (Basel) 2019, 8, E409. [Google Scholar] [CrossRef] [Green Version]
- Davidovich, E.; Davidovits, M.; Peretz, B.; Shapira, J.; Aframian, D.J. Elevated salivary potassium in paediatric CKD patients, a novel excretion pathway. Nephrol. Dial. Transplant. 2011, 26, 1541–1546. [Google Scholar] [CrossRef] [Green Version]
- Renda, R. Can salivary creatinine and urea levels be used to diagnose chronic kidney disease in children as accurately as serum creatinine and urea levels? A case-control study. Ren. Fail. 2017, 39, 452–457. [Google Scholar] [CrossRef]
- Pavlova, E.L.; Lilova, M.I.; Savov, V.M. Oxidative stress in children with kidney disease. Pediatric Nephrol. 2005, 20, 1599–1604. [Google Scholar] [CrossRef]
- Walt, D.R.; Blicharz, T.M.; Hayman, R.B.; Rissin, D.M.; Bowden, M.; Siqueira, W.L.; Helmerhorst, E.J.; Grand-Pierre, N.; Oppenheim, F.G.; Bhatia, J.S.; et al. Microsensor arrays for saliva diagnostics. Ann. N. Y. Acad. Sci. 2007, 1098, 389–400. [Google Scholar] [CrossRef]
- Arregger, A.L.; Cardoso, E.M.; Tumilasci, O.; Contreras, L.N. Diagnostic value of salivary cortisol in end stage renal disease. Steroids 2008, 73, 77–82. [Google Scholar] [CrossRef]
- Blicharz, T.M.; Rissin, D.M.; Bowden, M.; Hayman, R.B.; DiCesare, C.; Bhatia, J.S.; Grand-Pierre, N.; Siqueira, W.L.; Helmerhorst, E.J.; Loscalzo, J.; et al. Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: A proof of principle. Clin. Chem. 2008, 54, 1473–1480. [Google Scholar] [CrossRef]
- Nagler, R.M. Saliva analysis for monitoring dialysis and renal function. Clin. Chem. 2008, 54, 1415–1417. [Google Scholar] [CrossRef]
- Savica, V.; Calo, L.; Santoro, D.; Monardo, P.; Granata, A.; Bellinghieri, G. Salivary phosphate secretion in chronic kidney disease. J. Ren. Nutr. 2008, 18, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Savica, V.; Calo, L.A.; Granata, A.; Caldarera, R.; Cavaleri, A.; Santoro, D.; Monardo, P.; Savica, R.; Muraca, U.; Bellinghieri, G. A new approach to the evaluation of hyperphosphatemia in chronic kidney disease. Clin. Nephrol. 2007, 68, 216–221. [Google Scholar] [CrossRef]
- Azar, N.; Baranak, S.; Ehsan, V. Evaluation and Comparison of Urinary Cytokines for the Diagnosis of Acute Pyelonephritis. Arch. Pediatr. Infect. Dis. 2016, 4, e38877. [Google Scholar] [CrossRef]
- Gürgöze, M.K.; Akarsu, S.; Yilmaz, E.; Gödekmerdan, A.; Akça, Z.; Ciftçi, I.; Aygün, A.D. Proinflammatory cytokines and procalcitonin in children with acute pyelonephritis. Pediatr. Nephrol. 2005, 20, 1148–1445. [Google Scholar] [CrossRef]
- Roilides, E.; Papachristou, F.; Gioulekas, E.; Tsaparidou, S.; Karatzas, N.; Sotiriou, J.; Tsiouris, J. Increased urine interleukin-6 concentrations correlate with pyelonephritic changes on 99mTc-dimercaptosuccinic acid scans in neonates with urinary tract infections. J. Infect. Dis. 1999, 180, 904–907. [Google Scholar] [CrossRef] [Green Version]
- Sheu, J.N.; Chen, M.C.; Chen, S.M.; Chen, S.L.; Chiou, S.Y.; Lue, K.H. Relationship between serum and urine interleukin-6 elevations and renal scarring in children with acute pyelonephritis. Scand. J. Urol. Nephrol. 2009, 43, 133–137. [Google Scholar] [CrossRef]
- Sheu, J.N.; Chen, M.C.; Lue, K.H.; Cheng, S.L.; Lee, I.C.; Chen, S.M.; Tsay, G.J. Serum and urine levels of interleukin-6 and interleukin-8 in children with acute pyelonephritis. Cytokine 2006, 36, 276–282. [Google Scholar] [CrossRef]
- Basu, R.K.; Donaworth, E.; Siroky, B.; Devarajan, P.; Wong, H.R. Loss of matrix metalloproteinase-8 is associated with worsened recovery after ischemic kidney injury. J. Ren. Fail. 2015, 37, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Kiselova-Kaneva, Y.; Tasinov, O.; Vankova, D.; Ivanova, D. Changes in COX-2, iNOS and GCL gene expression in 3T3-L1 preadipocytes incubated in macrophage conditioned medium. Scr. Sci. Med. 2013, 45, 32–35. [Google Scholar] [CrossRef]
- Malamud, D.; Rodriguez-Chavez, I.R. Saliva as a Diagnostic Fluid. Dent. Clin. N. Am. 2011, 55, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Chiappina, S.; Antonellia, G.; Gatti, R.; De Palo, E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
- Han, W.K.; Waikar, S.S.; Johnson, A.; Betensky, R.A.; Dent, C.L.; Devarajan, P.; Bonventre, J.V. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008, 73, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Bliznakova, D. Congenital Anomalies of the Excretory System in Child’s Age-Challenge in front of the General Practitioner. Common Med. 2013, 15, 45–48. [Google Scholar]
- Bliznakova, D. For the Pediatric Nephrology-Practically, 1st ed.; Folly Art: Dobrich, Bulgaria, 2015; ISBN 978-619-7137-59-0. [Google Scholar]
- Bliznakova, D.; Balev, B.; Valchev, G.; Asenovski, K.; Kupenova, M. Ultrasound diagnostics of congenital kidney anomalies in children. J. Med. Coll.-Varna 2018, 1, 34–41. [Google Scholar]
- Lenz, O.; Elliot, J.S.; Stetler-Stevenson, W.G. Matrix Metalloproteinases in Renal Development and Disease. J. Am. Soc. Nephrol. 2000, 11, 574–581. [Google Scholar]
- Cox, J.H.; Starr, A.E.; Kappelhoff, R.; Yan, R.; Roberts, C.R.; Overall, C.M. Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression. Arthritis Rheum. 2010, 62, 3645–3655. [Google Scholar] [CrossRef]
- Bliznakova, D. Pediatrics for Dental Medicine Doctors, 1st ed.; Folly Art: Dobrich, Bulgaria, 2010; ISBN 978-954-92506-5-7. [Google Scholar]
- Li, Y.; Kang, Y.S.; Dai, C.; Kiss, L.P.; Wen, X.; Liu, Y. Epithelial-tomesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 2008, 172, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, F.; Witko-Sarsat, V.; Drueke, T.; Descamps-Latscha, B. Restoring glutathione as a therapeutic strategy in chronic kidney disease. Nephrol. Dial. Transplant. 2004, 19, 1951–1955. [Google Scholar] [CrossRef]
- Liu, R.M.; Gaston Pravia, K.A. Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic. Biol. Med. 2010, 48, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.; MacNee, W. Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic. Biol. Med. 2000, 28, 1405–1420. [Google Scholar] [CrossRef]
- Hussain, S.P.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J. Cancer 2007, 121, 2373–2380. [Google Scholar] [CrossRef]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, L.H. Role of glutathione transport processes in kidney function. Toxicol. Appl. Pharmacol. 2005, 204, 329–342. [Google Scholar] [CrossRef]
- Verhasselt, V.; Vanden Berghe, W.; Vanderheyde, N.; Willems, F.; Haegeman, G.; Goldman, M. N-acetyl-L-cysteine inhibits primary human T cell responses at the dendritic cell level: Association with NF-kappa B inhibition. J. Immunol. 1999, 162, 2569–2574. [Google Scholar]
- Yang, H.; Zeng, Y.; Lee, T.D.; Yang, Y.; Ou, X.; Chen, L.; Haque, M.; Rippe, R.; Lu, S.C. Role of AP-1 in the coordinate induction of rat glutamate-cysteine ligase and glutathione synthetase by tert-butylhydroquinone. J. Biol. Chem. 2002, 277, 35232–35239. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Patient № | Urine Analysis Indicators | Family Anamnesis for Kidney Diseases | Occurrence/Recurrence of Kidney Disorder | ||
---|---|---|---|---|---|
Proteins | Blood | Leucocytes | |||
12 | trace < 30 mg/dL | 250 Ery/µL | +++ 500 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
28 | + 30–100 mg/dL | 50 Ery/µL Hemolysis | +++ 500 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
7 | 0 mg/dL | 10 Ery/µL Non-Hemolysis | +75 Leuc/µL | Father—with kidney aplasia (lack of one of the kidneys); brother- with significant bacteriuria; | Primary patient (Initial outset of the kidney disease) |
17 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | 25 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
4 | 0 mg/dL | negative | 25 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
16 | 0 mg/dL | 250 Ery/µL Non-Hemolysis | + 75 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
11 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | + 75 Leuc/µL | Sister—congenital anomaly of the excretory system (lack of one kidney) | Chronical kidney disease, in condition of exacerbation |
23 | 0 mg/dL | 10 Ery/µL Non-Hemolysis | 25 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
19 | +30–100 mg/dL | 50 Ery/µL Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
10 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
6 | trace < 30 mg/dL | 10 Ery/µL Non-Hemolysis | 25 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
5 | trace < 30 mg/dL | 250 Ery/µL | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
2 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
1 | trace < 30 mg/dL | 250 Ery/µL | + 75 Leuc/µL | Mother with nephrolithiasis | Primary patient (Initial outset of the kidney disease) |
24 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | + 75 Leuc/µL | Father with non-diagnosed kidney disorder | Chronical kidney disease, in condition of exacerbation |
27 | +30–100 mg/dL | 5-10 Ery/µL Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
21 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
25 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
26 | trace < 30 mg/dL | 50 Ery/µL Hemolysis | + 75 Leuc/µL | Aunt with kidney agenesia; cousin suffering from pyelonephrithis | Chronical kidney disease, in condition of exacerbation |
3 | trace < 30 mg/dL | 10 Ery/µL Non-Hemolysis | 25 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
8 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | 25 Leuc/µL | Grandfather and father suffering from nephrolithiasis | Chronical kidney disease, in condition of exacerbation |
9 | trace < 30 mg/dL | 25 Ery/µL Hemolysis | 25 Leuc/µL | Grand-grandfather and grandfather suffering from nephrolithiasis | Chronical kidney disease, in condition of exacerbation |
14 | +30–100 mg/dL | 50 Ery/µL Hemolysis | + 75 Leuc/µL | Aunt suffering from renal failure; mother with diagnosed pyelonephritis | Chronical kidney disease, in condition of exacerbation |
22 | trace < 30 mg/dL | 250 Ery/µL | +++ 500 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
20 | trace < 30 mg/dL | 5–10 Ery/µL Hemolysis | 25 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
13 | +30–100 mg/dL | 5–10 Ery/µL Hemolysis | + 75 Leuc/µL | None | Primary patient (Initial outset of the kidney disease) |
15 | trace < 30 mg/dL | 50 Ery/µL Non-Hemolysis | 25 Leuc/µL | None | Chronical kidney disease, in condition of exacerbation |
18 | trace < 30 mg/dL | 250 Ery/µL | + 75 Leuc/µL | Grandmother suffering from nephrolithiasis | Chronical kidney disease, in condition of exacerbation |
Leu | p | Blood | p | IL-6 | p | GSS | p | MMP-8 | p | |
---|---|---|---|---|---|---|---|---|---|---|
Leu | - | - | 0.45 | <0.05 | 0.43 | <0.05 | 0.54 | <0.01 | 0.72 | <0.001 |
Blood | 0.45 | <0.05 | - | - | 0.15 | ns | 0.20 | ns | 0.30 | ns |
IL-6 | 0.43 | <0.05 | 0.15 | ns | - | - | 0.75 | <0.001 | 0.75 | <0.001 |
GSS | 0.54 | <0.01 | 0.20 | ns | 0.75 | <0.001 | - | - | 0.86 | <0.001 |
MMP-8 | 0.72 | <0.001 | 0.30 | ns | 0.75 | <0.001 | 0.86 | <0.001 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, S.; Salim, A.; Kiselova-Kaneva, Y.; Ivanova, D.; Peev, S. Association of mRNA Levels of IL6, MMP-8, GSS in Saliva and Pyelonephritis in Children. Molecules 2020, 25, 85. https://doi.org/10.3390/molecules25010085
Angelova S, Salim A, Kiselova-Kaneva Y, Ivanova D, Peev S. Association of mRNA Levels of IL6, MMP-8, GSS in Saliva and Pyelonephritis in Children. Molecules. 2020; 25(1):85. https://doi.org/10.3390/molecules25010085
Chicago/Turabian StyleAngelova, Sirma, Ayshe Salim, Yoana Kiselova-Kaneva, Diana Ivanova, and Stefan Peev. 2020. "Association of mRNA Levels of IL6, MMP-8, GSS in Saliva and Pyelonephritis in Children" Molecules 25, no. 1: 85. https://doi.org/10.3390/molecules25010085
APA StyleAngelova, S., Salim, A., Kiselova-Kaneva, Y., Ivanova, D., & Peev, S. (2020). Association of mRNA Levels of IL6, MMP-8, GSS in Saliva and Pyelonephritis in Children. Molecules, 25(1), 85. https://doi.org/10.3390/molecules25010085