Application of Switchable Hydrophobicity Solvents for Extraction of Emerging Contaminants in Wastewater Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Study: SHS Selection
2.2. Optimization of the Microextraction Procedure
2.2.1. Selection of Extractant Phase Volume
2.2.2. Selection of Sample Volume
2.2.3. NaOH Volume Effect
2.3. Analytical Figures of Merit
2.4. Applicability of SHS to Emerging Pollutants Analysis
2.5. Analysis of Environmental Water Samples
2.6. Comparison with Other Microextraction Alternatives
3. Materials and Methods
3.1. Reagents
3.2. Apparatus
3.3. Hydrophilic Amine Phase Preparation (SHS)
3.4. Microextraction Procedure
3.5. Wastewater Collection and Preparation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kabir, A.; Locatelli, M.; Ulusoy, H.I. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation. Separations 2017, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Payán, M. Liquid—Phase microextraction and electromembrane extraction in millifluidic devices: A tutorial. Anal. Chim. Acta 2019, 1080, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Alexovič, M.; Dotsikas, Y.; Bober, P.; Sabo, J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J. Chromatogr. B 2018, 1092, 402–421. [Google Scholar] [CrossRef] [PubMed]
- Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-phase microextraction—The different principles and configurations. TrAC Trends Anal. Chem. 2019, 112, 264–272. [Google Scholar] [CrossRef]
- Armenta, S.; Esteve-Turrillas, F.A.; Garrigues, S.; Guardia, M. de la Chapter One—Green Analytical Chemistry: The Role of Green Extraction Techniques. In Green Extraction Techniques; Ibáñez, E., Cifuentes, A., Eds.; Elsevier: Amsterdam, The Netherland, 2017; Volume 76, pp. 1–25. ISSN 0166-526X. [Google Scholar]
- Llompart, M.; Celeiro, M.; García-Jares, C.; Dagnac, T. Environmental applications of solid-phase microextraction. TrAC Trends Anal. Chem. 2019, 112, 1–12. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G.A.; Alam, M.N.; Boyacı, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal. Chem. 2018, 90, 302–360. [Google Scholar] [CrossRef]
- Kissoudi, M.; Samanidou, V. Recent Advances in Applications of Ionic Liquids in Miniaturized Microextraction Techniques. Molecules 2018, 23, 1437. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.; Alhooshani, K. Dispersive liquid-liquid microextraction based binary extraction techniques prior to chromatographic analysis: A review. TrAC Trends Anal. Chem. 2018, 108, 167–182. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Amiri, A. Liquid-phase microextraction. TrAC Trends Anal. Chem. 2010, 29, 1–14. [Google Scholar] [CrossRef]
- Yilmaz, E.; Soylak, M. Latest trends, green aspects, and innovations in liquid-phase--based microextraction techniques: A review. Turkish J. Chem. 2016, 40, 868–893. [Google Scholar] [CrossRef] [Green Version]
- Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 2014, 119, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Spietelun, A.; Marcinkowski, Ł.; de la Guardia, M.; Namieśnik, J. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J. Chromatogr. A 2013, 1321, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.; Chiu, D.; Heldebrant, D.J.; Huttenhower, H.; John, E.; Li, X.; Pollet, P.; Wang, R.; Eckert, C.A.; Liotta, C.L.; et al. Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Ind. Eng. Chem. Res. 2008, 47, 539–545. [Google Scholar] [CrossRef]
- Jessop, P.G.; Phan, L.; Carrier, A.; Robinson, S.; Dürr, C.J.; Harjani, J.R. A solvent having switchable hydrophilicity. Green Chem. 2010, 12, 809–814. [Google Scholar] [CrossRef]
- Jessop, P.G.; Kozycz, L.; Rahami, Z.G.; Schoenmakers, D.; Boyd, A.R.; Wechsler, D.; Holland, A.M. Tertiary amine solvents having switchable hydrophilicity. Green Chem. 2011, 13, 619–623. [Google Scholar] [CrossRef]
- Boyd, A.R.; Champagne, P.; McGinn, P.J.; MacDougall, K.M.; Melanson, J.E.; Jessop, P.G. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bioresour. Technol. 2012, 118, 628–632. [Google Scholar] [CrossRef]
- Vanderveen, J.R.; Durelle, J.; Jessop, P.G. Design and evaluation of switchable-hydrophilicity solvents. Green Chem. 2014, 16, 1187–1197. [Google Scholar] [CrossRef] [Green Version]
- Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Use of switchable solvents in the microextraction context. Talanta 2015, 131, 645–649. [Google Scholar] [CrossRef]
- Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Use of switchable hydrophilicity solvents for the homogeneous liquid–liquid microextraction of triazine herbicides from environmental water samples. J. Sep. Sci. 2015, 38, 990–995. [Google Scholar] [CrossRef]
- Habibiyan, A.; Ezoddin, M.; Lamei, N.; Abdi, K.; Amini, M.; Ghazi-khansari, M. Ultrasonic assisted switchable solvent based on liquid phase microextraction combined with micro sample injection flame atomic absorption spectrometry for determination of some heavy metals in water, urine and tea infusion samples. J. Mol. Liq. 2017, 242, 492–496. [Google Scholar] [CrossRef]
- Rameshgar, J.; Hasheminasab, K.S.; Adlnasab, L.; Ahmar, H. Switchable-hydrophilicity solvent-based microextraction combined with gas chromatography for the determination of nitroaromatic compounds in water samples. J. Sep. Sci. 2017, 40, 3114–3119. [Google Scholar] [CrossRef] [PubMed]
- Memon, Z.M.; Yilmaz, E.; Soylak, M. Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. J. Mol. Liq. 2017, 229, 459–464. [Google Scholar] [CrossRef]
- Schaadt, A.; Bart, H.-J. Coalescence Extraction—A Benign Extraction Tool. Chem. Eng. Technol. 2003, 26, 469–472. [Google Scholar] [CrossRef]
- Hamid, Y.; Fat’hi, M.R. A fast and green preconcentration method based on surfactant ion pair-switchable solvent dispersive liquid–liquid microextraction for determination of phenazopyridine in pharmaceutical and biological samples. J. Iran. Chem. Soc. 2018, 15, 1813–1820. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, B.; He, M.; Hu, B. Switchable solvent based liquid phase microextraction of trace lead and cadmium from environmental and biological samples prior to graphite furnace atomic absorption spectrometry detection. Microchem. J. 2018, 139, 380–385. [Google Scholar] [CrossRef]
- Wang, X.; Gao, M.; Zhang, Z.; Gu, H.; Liu, T.; Yu, N.; Wang, X.; Wang, H. Development of CO2-Mediated Switchable Hydrophilicity Solvent-Based Microextraction Combined with HPLC-UV for the Determination of Bisphenols in Foods and Drinks. Food Anal. Methods 2018, 11, 2093–2104. [Google Scholar] [CrossRef]
- Yang, Z.; He, C.; Sui, H.; He, L.; Li, X. Recent advances of CO2-responsive materials in separations. J. CO2 Util. 2019, 30, 79–99. [Google Scholar] [CrossRef]
- Ivanová, L.; Mackuľak, T.; Grabic, R.; Golovko, O.; Koba, O.; Staňová, A.V.; Szabová, P.; Grenčíková, A.; Bodík, I. Pharmaceuticals and illicit drugs—A new threat to the application of sewage sludge in agriculture. Sci. Total Environ. 2018, 634, 606–615. [Google Scholar] [CrossRef]
- Yang, C.; Barlow, S.M.; Muldoon Jacobs, K.L.; Vitcheva, V.; Boobis, A.R.; Felter, S.P.; Arvidson, K.B.; Keller, D.; Cronin, M.T.D.; Enoch, S.; et al. Thresholds of Toxicological Concern for cosmetics-related substances: New database, thresholds, and enrichment of chemical space. Food Chem. Toxicol. 2017, 109, 170–193. [Google Scholar] [CrossRef]
- Woodley, J.M.; Breuer, M.; Mink, D. A future perspective on the role of industrial biotechnology for chemicals production. Chem. Eng. Res. Des. 2013, 91, 2029–2036. [Google Scholar] [CrossRef]
- Ankley, G.T.; Hoff, D.J.; Mount, D.R.; Lazorchak, J.; Beaman, J.; Linton, T.K.; Erickson, R.J. Aquatic Life Criteria for Contaminants of Emerging Concern; OW/ORD Emerging Contaminants Workgroup; EPA: Boston, MA, USA, 2008; pp. 1–46.
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Parolini, M.; Binelli, A.; Provini, A. Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol. Environ. Saf. 2011, 74, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Makowska, N.; Koczura, R.; Mokracka, J. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere 2016, 144, 1665–1673. [Google Scholar] [CrossRef]
- López de Alda, M.J.; Barceló, D. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography–diode array detection–mass spectrometry. J. Chromatogr. A 2000, 892, 391–406. [Google Scholar] [CrossRef]
- Santos, L.H.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [Green Version]
- Ghambarian, M.; Tajabadi, F.; Yamini, Y.; Behbahani, M.; Sobhi, H.R.; Esrafili, A. An efficient sample preparation method based on dispersive liquid–liquid microextraction associated with back extraction for trace determination of acidic pharmaceuticals. Arab. J. Chem. 2018. [Google Scholar] [CrossRef]
- Maasz, G.; Mayer, M.; Zrinyi, Z.; Molnar, E.; Kuzma, M.; Fodor, I.; Pirger, Z.; Takács, P. Spatiotemporal variations of pharmacologically active compounds in surface waters of a summer holiday destination. Sci. Total Environ. 2019, 677, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Aufartová, J.; Mahugo-Santana, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Nováková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: An overview. Anal. Chim. Acta 2011, 704, 33–46. [Google Scholar] [CrossRef]
- Patrolecco, L.; Capri, S.; Ademollo, N. Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environ. Sci. Pollut. Res. 2015, 22, 5864–5876. [Google Scholar] [CrossRef]
- Singh, K.P.; Rai, P.; Singh, A.K.; Verma, P.; Gupta, S. Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environ. Monit. Assess. 2014, 186, 6663–6682. [Google Scholar] [CrossRef] [PubMed]
- Larsson, E.; al-Hamimi, S.; Jönsson, J.Å. Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry. Sci. Total Environ. 2014, 485, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Botero-Coy, A.M.; Martínez-Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-Marín, L.P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total Environ. 2018, 642, 842–853. [Google Scholar] [CrossRef]
- Montesdeoca-Esponda, S.; Guedes-Alonso, R.; Santana-Viera, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Applications of fabric phase sorptive extraction to the determination of micropollutants in liquid samples. Separation 2018, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.M.; Ide, A.H.; Neng, N.R.; Nogueira, J.M.F. Application of bar adsorptive microextraction to determine trace organic micro-pollutants in environmental water matrices. Int. J. Environ. Anal. Chem. 2017, 97, 484–498. [Google Scholar] [CrossRef]
- González, A.; Avivar, J.; Cerdà, V. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid–liquid microextraction prior silylation and gas chromatography. J. Chromatogr. A 2015, 1413, 1–8. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, G.; Asensio-Ramos, M.; Hernández-Borges, J.; Fanali, S.; Rodríguez-Delgado, M.Á. Estrogenic compounds determination in water samples by dispersive liquid–liquid microextraction and micellar electrokinetic chromatography coupled to mass spectrometry. J. Chromatogr. A 2014, 1344, 109–121. [Google Scholar] [CrossRef]
- Chang, C.-C.; Huang, S.-D. Determination of the steroid hormone levels in water samples by dispersive liquid–liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography. Anal. Chim. Acta 2010, 662, 39–43. [Google Scholar] [CrossRef]
- Ramos-Payan, M.; Maspoch, S.; Llobera, A. An effective microfluidic based liquid-phase microextraction device (μLPME) for extraction of non-steroidal anti-inflammatory drugs from biological and environmental samples. Anal. Chim. Acta 2016, 946, 56–63. [Google Scholar] [CrossRef]
- Park, S.Y.; Myung, S.-W. Simultaneous determination of nonsteroidal anti-inflammatory drugs in aqueous samples using dispersive liquid–liquid microextraction and HPLC analysis. Bull. Korean Chem. Soc. 2015, 36, 2901–2906. [Google Scholar] [CrossRef]
- Toledo-Neira, C.; Álvarez-Lueje, A. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection. Talanta 2015, 134, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Analyte | Linear Range (ng mL−1) | R 1 | LOD 2 (ng mL−1) | LOQ 3 (ng mL−1) | LogP a | AER 4 (%) | Precision (Exp. as RSD% 5) | EF 6 |
---|---|---|---|---|---|---|---|---|
Ketoprofen | 100–20,000 | 0.997 | 1.9 | 6.4 | 3.1 | 51 | 3.2 | 9 |
Naproxen | 100–20,000 | 0.999 | 0.8 | 2.7 | 3.2 | 56 | 4.3 | 10 |
Diclofenac | 300–20,000 | 0.998 | 5.3 | 17.6 | 4.5 | 99 | 4.1 | 18 |
Ibuprofen | 150–20,000 | 0.999 | 2.3 | 7.6 | 4.0 | 90 | 5.3 | 18 |
Mefenamic Acid | 300–20,000 | 0.999 | 5.9 | 19.6 | 5.2 | 98 | 3.4 | 18 |
Triclosan | 6400–20,000 | 0.996 | 106 | 356 | 5 | 103 | 1.8 | 18 |
E2 | 250–50,000 | 0.999 | 3.7 | 12.2 | 4 | 85 | 3.6 | 15 |
EE | 250–50,000 | 0.994 | 4.5 | 14.9 | 3.7 | 82 | 6.0 | 15 |
Analyte | Spiked (ng mL−1) | Found (ng mL−1) | Recovery (% ± SD 1) |
---|---|---|---|
Ketoprofen | 30 | 17 ± 1 | 57 ± 5 |
Naproxen | 30 | 15 ± 1 | 50 ± 7 |
Diclofenac | 360 | 350 ± 13 | 97 ± 4 |
Ibuprofen | 30 | 27 ± 2 | 91 ± 7 |
Mefenamic acid | 360 | 359 ± 15 | 99 ± 4 |
EE | 30 | 26 ± 2 | 85± 7 |
E2 | 30 | 27 ± 1 | 86± 4 |
Triclosan | 360 | 360 ± 18 | 100 ± 5 |
Extraction Technique | Analytes | Sample Volume (mL) | Extractant Amount | Inst. Technique | LOD 1 (ng mL−1) | Proc. Time (min) | Notes | Ref. |
---|---|---|---|---|---|---|---|---|
FSPE 2 | Steroid Hormones | 10 | Fabric piece | UHPLC-MS/MS | 0.001–0.264 | 45 | Solvent wash fabric reuse | [46] |
BAµE 3 | 25 | 8.1 mg | HPLC-DAD | 0.01–0.1 | Hours (16.5) | Long procedure | [47] | |
DLLME | 4.5 | 250 µL (+200 µL disp.) | GC-MS | 0.011–0.082 | 3 | Derivatization required | [48] | |
DLLME | 7.5 | 110 µL (+500 µL disp.) | MEKC 4–MS | 0.04–1.1 | 7 | [49] | ||
DLLME-SFO 5 | 5 | 10 µL (+200 µL disp.) | UPLC-UV | 0.8–2.7 | n/a 6 | [50] | ||
SHS-HLLME | 8 | 375 µL | HPLC-DAD-FLR | 3.7–4.5 | 2.3 | Present method | ||
HF-LPME | NSAIDs | 50 | 20 cm Fiber (+10 µL acceptor phase) | HPLC-MS | 7.1–89.3 | Hours (n/a) | Long sample preparation | [44] |
µLPME | 0.005 | 5.0 µL | HPLC-UV | 70–300 | 5 | Microfluidic device | [51] | |
DLLME | 5 | 200 µL (+1000 µL disp.) | HPLC-DAD-MS | 0.65–1.3 | 15 | [52] | ||
DLLME | 5 | 90 µL (+210 µL disp.) | HPLC-UV | 17–95 | n/d | [53] | ||
SHS-HLLME | 8 | 375 µL | HPLC-DAD-FLR | 0.8–5.9 | 2.3 | Present method |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasarte-Aragonés, G.; Álvarez-Lueje, A.; Salazar, R.; Toledo-Neira, C. Application of Switchable Hydrophobicity Solvents for Extraction of Emerging Contaminants in Wastewater Samples. Molecules 2020, 25, 86. https://doi.org/10.3390/molecules25010086
Lasarte-Aragonés G, Álvarez-Lueje A, Salazar R, Toledo-Neira C. Application of Switchable Hydrophobicity Solvents for Extraction of Emerging Contaminants in Wastewater Samples. Molecules. 2020; 25(1):86. https://doi.org/10.3390/molecules25010086
Chicago/Turabian StyleLasarte-Aragonés, Guillermo, Alejandro Álvarez-Lueje, Ricardo Salazar, and Carla Toledo-Neira. 2020. "Application of Switchable Hydrophobicity Solvents for Extraction of Emerging Contaminants in Wastewater Samples" Molecules 25, no. 1: 86. https://doi.org/10.3390/molecules25010086
APA StyleLasarte-Aragonés, G., Álvarez-Lueje, A., Salazar, R., & Toledo-Neira, C. (2020). Application of Switchable Hydrophobicity Solvents for Extraction of Emerging Contaminants in Wastewater Samples. Molecules, 25(1), 86. https://doi.org/10.3390/molecules25010086