Volatile Profile in Yogurt Obtained from Saanen Goats Fed with Olive Leaves
Abstract
:1. Introduction
2. Results
2.1. Chemical Properties of Yogurt Samples
2.2. Fatty Acid Composition
2.3. Evaluation of the Oxidative Stability in Fresh and Stored Yogurt
2.4. Identification of Volatile Compounds
3. Discussion
4. Materials and Methods
4.1. Experimental Design, Yogurt Manufacturing Protocol and Sampling
4.2. Chemical Analysis
4.3. Fatty Acid Composition
4.4. Total Antioxidant Capacity and Lipid Peroxidation
4.5. Determination of Volatile Compounds
4.6. Statystical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ceballos, L.S.; Morales, E.R.; Adarve, G.D.L.T.; Diaz-Castro, J.; Martínez, L.P.; Sampelayo, M.R.S. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Miller, B.A.; Lu, C.D. Current status of global dairy goat production: An overview. Asian-Australasian J. Anim. Sci. 2019, 32, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Servín, J.L.; Andrade-Montemayor, H.M.; Vázquez, C.V.; Barreyro, A.A.; Garcia-Gasca, T.; Ferríz-Martínez, R.A.; Ramírez, A.M.O.; De La Torre-Carbot, K. Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Rumin. Res. 2018, 160, 54–58. [Google Scholar] [CrossRef]
- Robinson, R.; Tamime, A.Y. Tamime and Robinson’s Yoghurt Science and Technology, Third Edition; Informa UK Limited: Cambridge, UK, 2007. [Google Scholar]
- Adolfsson, O.; Meydani, S.N.; Russell, R.M. Yogurt and gut function. Am. J. Clin. Nutr. 2004, 80, 245–256. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Baines, S.K.; Balthazar, C.F.; Cruz, A.G.; Esmerino, E.A.; Freitas, M.Q.; Pimentel, T.C.; Wittwer, A.E.; Naumovski, N.; et al. Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Compr. Rev. Food Sci. Food Saf. 2019, 18, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.A.; De Oliveira, M.E.G.; De Figueirêdo, R.M.F.; Sampaio, K.; De Souza, E.L.; De Oliveira, C.E.V.; Pintado, M.; Queiroga, R.C. The effect of Isabel grape addition on the physicochemical, microbiological and sensory characteristics of probiotic goat milk yogurt. Food Funct. 2017, 8, 2121–2132. [Google Scholar] [CrossRef]
- Iannaccone, M.; Elgendy, R.; Giantin, M.; Martino, C.; Giansante, D.; Ianni, A.; Dacasto, M.; Martino, G. RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet. Animals 2018, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Chedea, V.; Pelmus, R.S.; Lazar, C.; Marin, D.E.; Calin, L.G.; Toma, S.M.; Dragomir, C.; Taranu, I. Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. J. Sci. Food Agric. 2016, 97, 2516–2523. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, G. Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Martino Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef] [Green Version]
- Iannaccone, M.; Ianni, A.; Ramazzotti, S.; Grotta, L.; Marone, E.; Cichelli, A.; Martino, G. Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens. Animals 2019, 9, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Palazzo, F.; Grotta, L.; Martino, G. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. J. Dairy Sci. 2017, 100, 8658–8669. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2016, 243, 89–99. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Thierry, A.; Collins, Y.F.; Mukdsi, M.A.; McSweeney, P.L.H.; Wilkinson, M.G.; Spinnler, H.E. Lipolysis and Metabolism of Fatty Acids in Cheese. In Cheese; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 423–444. [Google Scholar]
- McSweeney, P.L. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Mele, M.; Conte, G.; Castiglioni, B.; Chessa, S.; Macciotta, N.P.; Serra, A.; Buccioni, A.; Pagnacco, G.; Secchiari, P. Stearoyl-Coenzyme A Desaturase Gene Polymorphism and Milk Fatty Acid Composition in Italian Holsteins. J. Dairy Sci. 2007, 90, 4458–4465. [Google Scholar] [CrossRef]
- Ntambi, J.M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 2004, 43, 91–104. [Google Scholar] [CrossRef]
- Corl, B.A.; Baumgard, L.H.; Dwyer, D.A.; Griinari, J.; Phillips, B.S.; Bauman, D.E. The role of Δ9-desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 2001, 12, 622–630. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Lovegrove, J.A.; Givens, D.I. The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: Evidence from human intervention studies. Nutr. Res. Rev. 2012, 25, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.; Mosley, E.E. BOARD-INVITED REVIEW: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Innosa, D.; Grotta, L.; D’Onofrio, A.; Martino, G. Chemical-nutritional characteristics and aromatic profile of milk and related dairy products obtained from goats fed with extruded linseed. Asian-Australas. J. Anim. Sci. 2019, 33, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innosa, D.; Bennato, F.; Ianni, A.; Martino, C.; Grotta, L.; Pomilio, F.; Martino, G. Influence of olive leaves feeding on chemical-nutritional quality of goat ricotta cheese. Eur. Food Res. Technol. 2020, 246, 923–930. [Google Scholar] [CrossRef]
- Bahloul, N.; Kechaou, N.; Mihoubi, N.B. Comparative investigation of minerals, chlorophylls contents, fatty acid composition and thermal profiles of olive leaves (Olea europeae L.) as by-product. Grasas Aceites 2014, 65, e035. [Google Scholar] [CrossRef] [Green Version]
- Kolakowska, A. Lipid oxidation in food systems. Chem. Funct. Prop. Food Lipids 2003, 8, 133–165. [Google Scholar]
- Innosa, D.; Ianni, A.; Palazzo, F.; Martino, F.; Bennato, F.; Grotta, L.; Martino, G. High temperature and heating effect on the oxidative stability of dietary cholesterol in different real food systems arising from eggs. Eur. Food Res. Technol. 2019, 245, 1533–1538. [Google Scholar] [CrossRef]
- Ianni, A.; Di Maio, G.; Pittia, P.; Grotta, L.; Perpetuini, G.; Tofalo, R.; Cichelli, A.; Martino, G. Chemical–nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Sci. Food Agric. 2019, 99, 3635–3643. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Martino, C.; Di Luca, A.; Innosa, D.; Fusco, A.M.; Pomilio, F.; Martino, G. Dietary supplementation of Saanen goats with dried licorice root modifies chemical and textural properties of dairy products. J. Dairy Sci. 2019, 103, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortuño, A.; Del Rio, J. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Güler, Z. Changes in salted yoghurt during storage. Int. J. Food Sci. Technol. 2007, 42, 235–245. [Google Scholar] [CrossRef]
- Ott, A.; Fay, L.B.; Chaintreau, A. Determination and Origin of the Aroma Impact Compounds of Yogurt Flavor. J. Agric. Food Chem. 1997, 45, 850–858. [Google Scholar] [CrossRef]
- Kinderlerer, J.L.; Lund, B.M. Inhibition ofListeria monocytogenesandListeria innocuaby hexanoic and octanoic acids. Lett. Appl. Microbiol. 1992, 14, 271–274. [Google Scholar] [CrossRef]
- Bertuzzi, A.S.; McSweeney, P.L.H.; Rea, M.; Kilcawley, K.N. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Collins, Y.F.; McSweeney, P.L.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- De Llano, D.G.; Ramos, M.; Polo, C.; Sanz, J.; Martínez-Castro, I. Evolution of the Volatile Components of an Artisanal Blue Cheese During Ripening. J. Dairy Sci. 1990, 73, 1676–1683. [Google Scholar] [CrossRef]
- McGorrin, R.J.; Spanier, A.M.; Shahidi, F.; Parliment, T.H.; Mussinan, C.; Ho, C.-T.; Contis, E.T. Advances in dairy flavor chemistry. In Special Publications; Royal Society of Chemistry (RSC): Cambridge, UK, 2007; pp. 67–84. [Google Scholar]
- Carrillo-Carrion, C.; Cardenas, S.; Valcarcel, M. Vanguard/rearguard strategy for the evaluation of the degradation of yoghurt samples based on the direct analysis of the volatiles profile through headspace-gas chromatography–mass spectrometry. J. Chromatogr. A 2007, 1141, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Garreta, A.; Benincasa, M.; Fusté, M.C.; Busquets, M.; Manresa, M. Ángeles Erratum to: Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl. Microbiol. Biotechnol. 2013, 97, 7527. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000; Volume II. [Google Scholar]
- Ianni, A.; Bennato, F.; Martino, C.; Innosa, D.; Grotta, L.; Martino, G. Effects of selenium supplementation on chemical composition and aromatic profiles of cow milk and its derived cheese. J. Dairy Sci. 2019, 102, 6853–6862. [Google Scholar] [CrossRef]
- Chen, J.; Lindmark-Månsson, H.; Gorton, L.; Åkesson, B. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 2003, 13, 927–935. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, C.; Pomilio, F.; Di Luca, A.; Martino, G. Dietary selenium intake in lactating dairy cows modifies fatty acid composition and volatile profile of milk and 30-day-ripened caciotta cheese. Eur. Food Res. Technol. 2019, 245, 2113–2121. [Google Scholar] [CrossRef]
- Ianni, A.; Iannaccone, M.; Martino, C.; Innosa, D.; Grotta, L.; Bennato, F.; Martino, G. Zinc supplementation of dairy cows: Effects on chemical composition, nutritional quality and volatile profile of Giuncata cheese. Int. Dairy J. 2019, 94, 65–71. [Google Scholar] [CrossRef]
- Dool, H.V.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
Sample Availability: Samples analysed during the current study are available from the corresponding author on reasonable request. |
Fatty Acids 1 | CG | OLG | p-Value |
---|---|---|---|
C4:0 | 0.54 ± 0.22 | 0.83 ± 0.39 | ns |
C6:0 | 1.03 ± 0.26 | 1.31 ± 0.39 | ns |
C8:0 | 1.73 ± 0.29 | 1.92 ± 0.34 | ns |
C10:0 | 7.65 ± 0.69 | 7.33 ± 0.58 | ns |
C12:0 | 4.31 ± 0.21 | 3.48 ± 0.12 | * |
C14:0 | 11.72 ± 0.44 | 10.75 ± 0.33 | * |
C15:0 | 0.93 ± 0.07 | 0.92 ± 0.03 | ns |
C16:0 | 29.58 ± 0.80 | 26.67 ± 0.66 | * |
C17:0 | 0.67 ± 0.02 | 0.66 ± 0.01 | ns |
C18:0 | 11.04 ± 0.42 | 13.10 ± 0.74 | ** |
C20:0 | 0.27 ± 0.03 | 0.29 ± 0.01 | ns |
C22:0 | 0.09 ± 0.03 | 0.09 ± 0.01 | ns |
total SFA | 69.54 ± 5.80 | 67.35 ± 5.61 | ns |
C14:1 | 0.42 ± 0.02 | 0.43 ± 0.01 | ns |
C16:1 | 0.33 ± 0.01 | 0.34 ± 0.01 | ns |
C18:1 trans11 | 0.43 ± 0.01 | 0.52 ± 0.15 | * |
C18:1 cis9 | 20.89 ± 0.59 | 23.22 ± 0.61 | ** |
C18:1 cis11 | 0.38 ± 0.02 | 0.30 ± 0.01 | ns |
total MUFA | 22.25 ± 0.92 | 24.80 ± 0.77 | * |
C18:2 | 2.92 ± 0.18 | 2.60 ± 0.14 | * |
CLA | 0.89 ± 0.07 | 1.12 ± 0.09 | * |
C18:3 | 0.78 ± 0.02 | 1.13 ± 0.05 | ** |
total PUFA | 4.62 ± 0.14 | 4.84 ± 0.07 | * |
other FAs | 3.20 ± 0.31 | 3.01 ± 0.30 | ns |
MUFA/SFA | 0.32 ± 0.02 | 0.37 ± 0.03 | * |
PUFA/SFA | 0.07 ± 0.01 | 0.07 ± 0.02 | ns |
UFA/SFA | 0.39 ± 0.02 | 0.44 ± 0.04 | * |
DI C14:1 cis-9/(C14:0+C14:1cis-9) | 0.04 ± 0.01 | 0.04 ± 0.01 | ns |
DI C16:1cis-9/(C16:0+C16:1cis-9) | 0.01 ± 0.01 | 0.01 ± 0.01 | ns |
DI C18:1cis-9/(C18:0+C18:1cis-9) | 0.65 ± 0.01 | 0.64 ± 0.01 | ns |
DI CLA/(C18:1trans-11+CLA) | 0.62 ± 0.09 | 0.69 ± 0.02 | ns |
VOC 1 | T1 | T7 | ||||
---|---|---|---|---|---|---|
CG | OLG | p | CG | OLG | p | |
FFAs | ||||||
Acetic acid | 0.26 ± 0.14 | 0.40 ± 0.15 | ns | nd | 0.48 ± 0.20 | ns |
Butanoic acid | 0.27 ± 0.23 | 0.16 ± 0.06 | ns | 0.10 ± 0.03 | 0.11 ± 0.03 | ns |
Hexanoic acid | 18.03 ± 1.69 | 20.80 ± 2.30 | ns | 15.39 ± 0.99 | 13.94 ± 0.74 | * |
Heptanoic acid | 0.56 ± 0.05 | 0.60 ± 0.06 | ns | 0.62 ± 0.02 | 0.43 ± 0.01 | ** |
Octanoic acid | 38.91 ± 3.31 | 45.70 ± 4.28 | * | 22.99 ± 2.61 | 43.79 ± 4.46 | ** |
Nonanoic acid | 0.29 ± 0.14 | 0.18 ± 0.03 | ns | 0.11 ± 0.03 | 0.14 ± 0.04 | ns |
Decanoic acid | 11.54 ± 0.64 | 15.11 ± 1.50 | * | 14.03 ± 2.77 | 13.97 ± 2.26 | ns |
Alcohols | ||||||
1-Hexanol | 1.80 ± 0.13 | 0.88 ± 0.06 | ** | 3.88 ± 0.71 | 1.72 ± 0.01 | * |
2-Ethyl-hexan-1-ol | 1.76 ± 0.14 | 1.13 ± 0.11 | * | 3.41 ± 0.25 | 2.45 ± 0.19 | ns |
1-Heptanol | 0.95 ± 0.13 | 0.24 ± 0.03 | ** | 1.06 ± 0.18 | 0.67 ± 0.09 | * |
1-Octanol | 0.39 ± 0.04 | 0.17 ± 0.02 | ** | 0.92 ± 0.03 | 0.39 ± 0.01 | ** |
1-Nonanol | 0.81 ± 0.05 | 0.52 ± 0.02 | ** | 1.32 ± 0.11 | 0.83 ± 0.10 | ** |
Aldehydes | ||||||
Heptanal | 0.05 ± 0.03 | 0.02 ± 0.01 | ns | 0.20 ± 0.10 | 0.04 ± 0.02 | * |
Nonanal | 1.84 ± 0.17 | 0.64 ± 0.05 | ** | 4.53 ± 0.25 | 2.06 ± 0.10 | * |
2-Heptenal | 0.09 ± 0.01 | 0.08 ± 0.04 | ns | 0.09 ± 0.01 | 0.02 ± 0.01 | ns |
2-Octenal | 0.12 ± 0.02 | 0.07 ± 0.02 | ns | 0.28 ± 0.01 | 0.11 ± 0.03 | ns |
2-Decenal | 0.20 ± 0.01 | 0.22 ± 0.02 | ns | 0.30 ± 0.04 | 0.19 ± 0.03 | ns |
Esters | ||||||
Butyl heptanoate | 0.18 ± 0.01 | 0.03 ± 0.01 | ** | 0.65 ± 0.05 | 0.26 ± 0.03 | ** |
Ketones | ||||||
Acetoin | 1.99 ± 0.08 | 3.20 ± 0.31 | ** | 3.22 ± 1.59 | 2.10 ± 0.39 | ns |
2-Pentanone | 0.10 ± 0.01 | 0.04 ± 0.01 | ns | 0.13 ± 0.02 | 0.59 ± 0.02 | ns |
2,3-Pentanedione | 0.06 ± 0.02 | 0.04 ± 0.01 | ns | 0.67 ± 0.01 | 0.03 ± 0.05 | ns |
2-Heptanone | 9.30 ± 3.11 | 4.43 ± 1.02 | * | 11.32 ± 2.40 | 6.81 ± 1.11 | * |
2-Nonanone | 9.25 ± 0.74 | 4.68 ± 0.41 | ** | 12.73 ± 0.99 | 7.38 ± 0.53 | ** |
2-Undecanone | 1.38 ± 0.25 | 0.98 ± 0.17 | ns | 1.94 ± 0.46 | 1.38 ± 0.20 | ns |
Lactones | ||||||
δ-Decalactone | 0.09 ± 0.01 | 0.03 ± 0.02 | ns | 0.05 ± 0.03 | 0.07 ±0.05 | ns |
δ-Dodecalactone | 0.05 ± 0.01 | 0.07 ± 0.01 | ns | 0.07 ± 0.01 | 0.03 ± 0.01 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennato, F.; Innosa, D.; Ianni, A.; Martino, C.; Grotta, L.; Martino, G. Volatile Profile in Yogurt Obtained from Saanen Goats Fed with Olive Leaves. Molecules 2020, 25, 2311. https://doi.org/10.3390/molecules25102311
Bennato F, Innosa D, Ianni A, Martino C, Grotta L, Martino G. Volatile Profile in Yogurt Obtained from Saanen Goats Fed with Olive Leaves. Molecules. 2020; 25(10):2311. https://doi.org/10.3390/molecules25102311
Chicago/Turabian StyleBennato, Francesca, Denise Innosa, Andrea Ianni, Camillo Martino, Lisa Grotta, and Giuseppe Martino. 2020. "Volatile Profile in Yogurt Obtained from Saanen Goats Fed with Olive Leaves" Molecules 25, no. 10: 2311. https://doi.org/10.3390/molecules25102311
APA StyleBennato, F., Innosa, D., Ianni, A., Martino, C., Grotta, L., & Martino, G. (2020). Volatile Profile in Yogurt Obtained from Saanen Goats Fed with Olive Leaves. Molecules, 25(10), 2311. https://doi.org/10.3390/molecules25102311