From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor
Abstract
:1. Introduction
2. Results and Discussion
2.1. PTR-QiToF-MS Spectral Profile
2.2. Concentration Differences of the VOCs
2.2.1. VOCs with Higher Concentrations in the EVOO Headspace
2.2.2. VOCs with Higher Concentrations in the ROO/POO Headspace
2.3. Odor Implications
2.4. Relative Concentration Differences of the VOCs
3. Materials and Methods
3.1. Samples Preparation
3.2. PTR-QiToF-MS Analysis
3.3. VOCs Data Pre-Processing
3.4. Relative Concentration
3.5. Data Analysis
3.6. Odor Threshold in Air
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Ranalli, A.; De Mattia, G.; Patumi, M.; Proietti, P. Quality of virgin olive oil as influenced by origin area. Grasas Aceites 1999, 50, 249–259. [Google Scholar] [CrossRef]
- Aparicio, R.; Morales, M.T. Characterization of olive ripeness by green aroma compounds of virgin olive oil. J. Agric. Food Chem. 1998, 46, 1116–1122. [Google Scholar] [CrossRef]
- Tura, D.; Prenzler, P.D.; Bedgood, D.R.; Antolovich, M.; Robards, K. Varietal and processing effects on the volatile profile of Australian olive oils. Food Chem. 2004, 84, 341–349. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Conte, L.; Totis, N. Influence of olive fruit storage in bags on oil quality and composition of volatile compounds. Food Technol. Biotech. 2002, 40, 129–133. [Google Scholar]
- Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; Lopez-Tamames, E. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: Modifications induced by oxidation and suitable markers of oxidative status. J. Agric. Food Chem. 2003, 51, 6564–6571. [Google Scholar] [CrossRef] [PubMed]
- Taiti, C.; Marone, E. EVOO or not EVOO? A new precise and simple analytical tool to discriminate virgin olive oils. Adv. Hortic. Sci. 2017, 31, 329–337. [Google Scholar]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Baccouri, B.; Ben Temime, S.; Campeol, E.; Cioni, P.L.; Daoud, D.; Zarrouk, M. Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils from five new cultivars. Food Chem. 2007, 102, 850–856. [Google Scholar] [CrossRef]
- Morales, M.T.; Angerosa, F.; Aparicio, R. Effect of the extraction conditions of virgin olive oil on the lipoxygenase cascade: Chemical and sensory implications. Grasas Aceites 1999, 50, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulos, K.; Valet, N.; Spiratos, D.; Siragakis, G. Olive oil and pomace olive oil processing. Grasas Aceites 2006, 57, 56–67. [Google Scholar]
- Morales, M.T.; Aparicio, R. Effect of extraction conditions on sensory quality of virgin olive oil. J. Am. Oil Chem. Soc. 1999, 76, 295–300. [Google Scholar] [CrossRef]
- Romero, I.; Garcia-Gonzalez, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME-GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Ben Brahim, S.; Amanpour, A.; Chtourou, F.; Kelebek, H.; Selli, S.; Bouaziz, M. Gas chromatography-mass spectrometry-olfactometry to control the aroma fingerprint of extra virgin olive oil from three tunisian cultivars at three harvest times. J. Agric. Food Chem. 2018, 66, 2851–2861. [Google Scholar] [CrossRef] [PubMed]
- Fabris, A.; Biasioli, F.; Granitto, P.M.; Aprea, E.; Cappellin, L.; Schuhfried, E.; Soukoulis, C.; Mark, T.D.; Gasperi, F.; Endrizzi, I. PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: Influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese. J. Mass Spectrom. 2010, 45, 1065–1074. [Google Scholar] [CrossRef]
- Taiti, C.; Costa, C.; Menesatti, P.; Comparini, D.; Bazihizina, N.; Azzarello, E.; Masi, E.; Mancuso, S. Class-modeling approach to PTR-TOFMS data: A peppers case study. J. Sci. Food Agric. 2015, 95, 1757–1763. [Google Scholar] [CrossRef]
- Masi, E.; Romani, A.; Pandolfi, C.; Heimler, D.; Mancuso, S. PTR-TOF-MS analysis of volatile compounds in olive fruits. J. Sci. Food Agric. 2015, 95, 1428–1434. [Google Scholar] [CrossRef]
- Yener, S.; Romano, A.; Cappellin, L.; Mark, T.D.; del Pulgar, J.S.; Gasperi, F.; Navarini, L.; Biasioli, F. PTR-ToF-MS characterisation of roasted coffees (C-arabica) from different geographic origins. J. Mass Spectrom. 2014, 49, 929–935. [Google Scholar] [CrossRef]
- Schuhfried, E.; del Pulgar, J.S.; Bobba, M.; Piro, R.; Cappellin, L.; Mark, T.D.; Biasioli, F. Classification of 7 monofloral honey varieties by PTR-ToF-MS direct headspace analysis and chemometrics. Talanta 2016, 147, 213–219. [Google Scholar] [CrossRef]
- del Pulgar, J.S.; Soukoulis, C.; Biasioli, F.; Cappellin, L.; Garcia, C.; Gasperi, F.; Granitto, P.; Mark, T.D.; Piasentier, E.; Schuhfried, E. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS). Talanta 2011, 85, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.J.; Koot, A.; Hettinga, K.; de Jong, J.; van Ruth, S.M. Portraying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad)MS and PTR-(ToF)MS. Food Chem. 2018, 239, 201–207. [Google Scholar] [CrossRef]
- Acierno, V.; Yener, S.; Alewijn, M.; Biasioli, F.; van Ruth, S. Factors contributing to the variation in the volatile composition of chocolate: Botanical and geographical origins of the cocoa beans, and brand-related formulation and processing. Food Res. Int. 2016, 84, 86–95. [Google Scholar] [CrossRef]
- Marone, E.; Masi, E.; Taiti, C.; Pandolfi, C.; Bazihizina, N.; Azzarello, E.; Fiorino, P.; Mancuso, S. Sensory, spectrometric (PTR–ToF–MS) and chemometric analyses to distinguish extra virgin from virgin olive oils. J. Food Sci. Tech. 2017, 54, 1368–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araghipour, N.; Colineau, J.; Koot, A.; Akkermans, W.; Rojas, J.M.M.; Beauchamp, J.; Wisthaler, A.; Mark, T.D.; Downey, G.; Guillou, C.; et al. Geographical origin classification of olive oils by PTR-MS. Food Chem. 2008, 108, 374–383. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, R.; Romero, I.; García-González, D.L.; Oliver-Pozo, C.; Aparicio, R. Soft-deodorization of virgin olive oil: Study of the changes of quality and chemical composition. Food Chem. 2017, 220, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Angerosa, F.; d’Alessandro, N.; Basti, C.; Vito, R. Biogeneration of volatile compounds in virgin olive oil: Their evolution in relation to malaxation time. J. Agric. Food Chem. 1998, 46, 2940–2944. [Google Scholar] [CrossRef]
- Davis, B.M.; Senthilmohan, S.T.; Wilson, P.F.; McEwan, M.J. Major volatile compounds in head-space above olive oil analysed by selected ion flow tube mass spectrometry. Rapid Commun. Mass Sp. 2005, 19, 2272–2278. [Google Scholar] [CrossRef] [PubMed]
- Leonardos, G.; Kendall, D.; Barnard, N. Odor threshold determination of 53 odorant chemicals. J. Air Pollut. Control Assoc. 1969, 19, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Vezzaro, A.; Boschetti, A.; Dell’Anna, R.; Canteri, R.; Dimauro, M.; Ramina, A.; Ferasin, M.; Giulivo, C.; Ruperti, B. Influence of olive (cv Grignano) fruit ripening and oil extraction under different nitrogen regimes on volatile organic compound emissions studied by PTR-MS technique. Anal. Bioanal. Chem. 2011, 399, 2571–2582. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Pasqualone, A.; Summo, C.; Caponio, F. An “omics” approach for lipid oxidation in foods: The case of free fatty acids in bulk purified olive oil. Eur. J. Lipid Sci. Tech. 2018, 120. [Google Scholar] [CrossRef]
- Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; Lopez-Tamames, E. Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 2003, 983, 19–33. [Google Scholar] [CrossRef]
- Ruth, J.H. Odor thresholds and irritation levels of several chemical substances: A review. Am. Ind. Hyg. Assoc. J. 1986, 47, A142–A151. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Ahn, D.U. Production of volatile compounds from irradiated oil emulsion containing amino acids or proteins. J. Food Sci. 2000, 65, 612–616. [Google Scholar] [CrossRef]
- Gomez-Cortes, P.; Sacks, G.L.; Brenna, J.T. Quantitative analysis of volatiles in edible oils following accelerated oxidation using broad spectrum isotope standards. Food Chem. 2015, 174, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiners, J.; Grosch, W. Odorants of virgin olive oils with different flavor profiles. J. Agric. Food Chem. 1998, 46, 2754–2763. [Google Scholar] [CrossRef]
- Iraqi, R.; Vermeulen, C.; Benzekri, A.; Bouseta, A.; Collin, S. Screening for key odorants in Moroccan green olives by gas chromatography-olfactometry/aroma extract dilution analysis. J. Agric. Food Chem. 2005, 53, 1179–1184. [Google Scholar] [CrossRef]
- Gracka, A.; Jelen, H.H.; Majcher, M.; Siger, A.; Kaczmarek, A. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting. J. Chromatogr. A 2016, 1428, 292–304. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Cappellin, L.; Aprea, E.; Granitto, P.; Wehrens, R.; Soukoulis, C.; Viola, R.; Mark, T.D.; Gasperi, F.; Biasioli, F. Linking GC-MS and PTR-TOF-MS fingerprints of food samples. Chemometr. Intell. Lab. 2012, 118, 301–307. [Google Scholar] [CrossRef]
- Yener, S.; Sanchez-Lopez, J.A.; Granitto, P.M.; Cappellin, L.; Mark, T.D.; Zimmermann, R.; Bonn, G.K.; Yeretzian, C.; Biasioli, F. Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS. Talanta 2016, 152, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Taiti, C.; Costa, C.; Menesatti, P.; Caparrotta, S.; Bazihizina, N.; Azzarello, E.; Petrucci, W.A.; Masi, E.; Giordani, E. Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. Eur. Food Res. Technol. 2015, 241, 91–102. [Google Scholar] [CrossRef]
- Morales, M.T.; Rios, J.J.; Aparicio, R. Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. J. Agric. Food Chem. 1997, 45, 2666–2673. [Google Scholar] [CrossRef]
- Yang, D.S.; Shewfelt, R.L.; Lee, K.-S.; Kays, S.J. Comparison of odor-active compounds from six distinctly different rice flavor types. J. Agric. Food Chem. 2008, 56, 2780–2787. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; Lopez-Tamames, E. The occurrence of volatile and semi-volatile aromatic hydrocarbons in virgin olive oils from north-eastern Italy. Food Control 2007, 18, 1204–1210. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K.; Morchio, G. On the origin of benzene, toluene, ethylbenzene and xylene in extra virgin olive oil. Z. Lebensm. Unters. For. 1995, 200, 266–272. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K.; Morchio, G. On the origin of benzene, toluene, ethylbenzene, and the xylenes in virgin olive oil—Further results. Z. Lebensm. Unters. For. 1996, 203, 224–229. [Google Scholar] [CrossRef]
- Carrillo-Carrión, C.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Liquid–liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene,(o-, m- and p-) xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant. J. Chromatogr. A 2007, 1171, 1–7. [Google Scholar] [CrossRef]
- Irwin, R.J.; Mouwerik, M.V.; Stevens, L.; Seese, M.D.; Basham, W. Environmental Contaminants Encyclopedia, Naphthalene Entry; National Park Service: Washington, WA, USA, 1997; pp. 1–80.
- Spiteller, P.; Kern, W.; Reiner, J.; Spiteller, G. Aldehydic lipid peroxidation products derived from linoleic acid. Bba-Mol. Cell Biol. L. 2001, 1531, 188–208. [Google Scholar] [CrossRef]
- Piperidou, C.I.; Chaidou, C.I.; Stalikas, C.D.; Soulti, K.; Pilidis, G.A.; Balis, C. Bioremediation of olive oil mill wastewater: Chemical alterations induced by Azotobacter vinelandii. J. Agric. Food Chem. 2000, 48, 1941–1948. [Google Scholar] [CrossRef]
- Holser, R. Odor development in refined meadowfoam (Limnanthes alba) oil. Ind. Crop. Prod. 2002, 16, 129–132. [Google Scholar] [CrossRef]
- Pérez, A.G.; de la Rosa, R.; Pascual, M.; Sánchez-Ortiz, A.; Romero-Segura, C.; León, L.; Sanz, C. Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual × Arbequina cultivars. J. Chromatogr. A 2016, 1428, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136. [Google Scholar]
- Morales, M.T.; Aparicio, R.; Calvente, J.J. Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Frag. J. 1996, 11, 171–178. [Google Scholar] [CrossRef]
- Mcewan, J.A. Consumer attitudes and olive oil acceptance: The potential consumer. Grasas Aceites 1994, 45, 9–15. [Google Scholar] [CrossRef]
- Tateo, F.; Brunelli, N.; Cucurachi, S.; Ferrillo, A. New trends in the study of the merits and short comings of olive oil in organoleptic terms, in correlation with the GC/MS analysis of the aromas. Dev. Food Sci. 2013, 32, 301–311. [Google Scholar]
- Yang, Y.; Ferro, M.D.; Cavaco, I.; Liang, Y.Z. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics. J. Agric. Food Chem. 2013, 61, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council, Spectrophotometric investigation in the ultraviolet. COI/T.20/Doc. No 19/Rev. 4. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-19-Rev.-5-2019-2.pdf (accessed on 21 November 2019).
- Yan, J.; Oey, S.B.; van Leeuwen, S.P.J.; van Ruth, S.M. Discrimination of processing grades of olive oil and other vegetable oils by monochloropropanediol esters and glycidyl esters. Food Chem. 2018, 248, 93–100. [Google Scholar] [CrossRef]
- Holzinger, R. PTRwid: A new widget tool for processing PTR-TOF-MS data. Atmos. Meas. Tech. 2015, 8, 3903–3922. [Google Scholar] [CrossRef] [Green Version]
- Cappellin, L.; Karl, T.; Probst, M.; Ismailova, O.; Winkler, P.M.; Soukoulis, C.; Aprea, E.; Mark, T.D.; Gasperi, F.; Biasioli, F. On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Environ. Sci. Technol. 2012, 46, 2283–2290. [Google Scholar] [CrossRef]
- Malásková, M.; Henderson, B.; Chellayah, P.D.; Ruzsanyi, V.; Mochalski, P.; Cristescu, S.M.; Mayhew, C.A. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J. Breath Res. 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Chemguide. Ideal Gases and the Ideal Gas Law. Available online: https://www.chemguide.co.uk/physical/kt/idealgases.html (accessed on 15 August 2017).
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, Revised Edition; Holden-Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Xu, L.; Yu, X.; Li, M.; Chen, J.; Wang, X. Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. Int. J. Food Prop. 2017, 20, S2926–S2938. [Google Scholar] [CrossRef] [Green Version]
- van Ruth, S.M.; Grossmann, I.; Geary, M.; Delahunty, C.M. Interactions between artificial saliva and 20 aroma compounds in water and oil model systems. J. Agric. Food Chem. 2001, 49, 2409–2413. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Takeuchi, N. Measurement of odor threshold by triangle odor bag method. Odor Meas. Rev. 2003, 118, 118–127. [Google Scholar]
- Nielsen, G.D.; Hansen, L.F.; Andersen, B.; Poulsen, N.; Melchior, O. Indoor air guideline levels for formic, acetic, propionic and butyric acid. Indoor Air 1998, 8, 8–24. [Google Scholar] [CrossRef]
- Shubert, D.; Leyba, J. Chemistry and Physics for Nurse Anesthesia: A Student-Centered Approach; Springer Publishing Company: New York, NY, USA, 2013. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Measured Protonated Mass m/z | Protonated Chemical Formula | Tentative Identification | Type | Reference | Odor Notes | Reference | OT | Average ± SD (ppbv) | ||
---|---|---|---|---|---|---|---|---|---|---|
EVOO | ROO | POO | ||||||||
C1–C4 A | ||||||||||
33.033 | CH5O+ | Methanol | Alcohols | [27,28] | Sweet | [29] | 100 × 103 | (348 ± 98) × 103 a | (106 ± 93) × 103 b | (18 ± 37) × 103 b |
43.018 | C2H3O+ | Esters | Esters | [30] | Ester, green, pungent, sweet, fruity | [30] | (44 ± 40) × 103 a | (16 ± 18) × 103 b | (6 ± 4) × 103 b | |
45.034 | C2H5O+ | Acetaldehyde | Aldehydes | [9] | Pungent, sweet | [9] | 210 | (64 ± 39) × 103 a | (41 ± 28) × 103 b | (39 ± 34) × 103 ab |
47.012 | CH3O2+ | Formic acid | Carboxylic acids | [31,32] | Pungent, penetrating | [33] | 28 × 103 | (3 ± 3) × 103 b | (12 ± 11) × 103 a | (17 ± 16) × 103 a |
47.049 | C2H7O+ | Ethanol | Alcohols | [1,9] | Apple, sweet, alcohol | [1,9] | 10 × 103 | (45 ± 55) × 103 a | (18 ± 25) × 103 b | (4 ± 8) × 103 b |
57.033 | C3H5O+ | 2-Propenal | Aldehydes | [32] | Unpleasant odor, irritating | [34,35] | 210 | (39 ± 33) × 103 a | (11 ± 12) × 103 b | (4 ± 5) × 103 b |
59.049 | C3H7O+ | Propanal | Aldehydes | [28,36] | Pungent, sweet | [36] | 419 | (16 ± 12) × 103 a | (12 ± 9) × 103 b | (10 ± 7) × 103 b |
Acetone | Ketones | [28] | Sweet, pungent | [29] | 100 × 103 | |||||
61.028 | C2H5O2+ | Acetic acid | Carboxylic acids | [9,37] | Sour, vinegary | [9] | 162 | (33 ± 33) × 103 a | (20 ± 24) × 103 ab | (7 ± 5) × 103 b |
63.026 | C2H7S+ | Dimethyl sulfide | Others | [30,38] | Wet earth, organic, beetroot, sulfury | [30,38] | 1 | (1 ± 2) × 103 a | 45 ± 54 b | 16 ± 11 b |
73.064 | C4H9O+ | Butan-2-one | Ketones | [9] | Ethereal, fruity | [9] | 10 × 103 | (4 ± 3) × 103 a | (3 ± 2) × 103 a | (3 ± 2) × 103 b |
75.044 | C3H7O2+ | Propanoic acid | Carboxylic acids | [9,32,39] | Pungent, sour, mold | [9,39] | 33 | (22 ± 21) × 103 a | (3 ± 3) × 103 b | 391 ± 471 b |
Methyl acetate | Esters | [1] | Ethereal, sweet | [1] | 561 × 103 | |||||
79.021 | C2H7OS+ | Dimethyl sulfoxide | Others | [37,40] | Unpleasant | [37] | 1 | 711 ± 810 a | 197 ± 183 b | 68 ± 51 b |
89.059 | C4H9O2+ | Ethyl acetate | Esters | [1,9] | Sticky, sweet, ethereal | [1,9] | 1 × 103 | (4 ± 4) × 103 a | (1 ± 1) × 103 b | 143 ± 236 b |
Butanoic acid | Carboxylic acids | [9,39] | Rancid, cheese | [9,39] | 1 | |||||
C5 | ||||||||||
85.064 | C5H9O+ | trans-2-Pentenal; trans-2-methyl-2-butenal | Aldehydes | [1,9] | Green, apple, bitter almond; green fruity, aromatic | [1,9] | 437 B | (7 ± 6) × 103 a | 284 ± 204 b | 105 ± 109 b |
1-Penten-3-one | Ketones | [1,9,37] | Green, pungent, mustard | [1,9] | ||||||
87.081 | C5H11O+ | 3-Penten-2-ol; 2-methyl-3-buten-2-ol | Alcohols | [1,9] | Perfumery, woody; grassy, earth, oily | [1,9] | (13 ± 8) × 103 a | (1 ± 1) × 103 b | 319 ± 208 b | |
2-Methylbutanal; 3-methylbutanal; pentanal | Aldehydes | [9,37] | Malty; malty; woody, bitter, oily | [9] | 11 C | |||||
3-Pentanone | Ketones | [30,40] | Sweet, green | [30] | ||||||
103.075 | C5H11O2+ | Ethyl propionate | Esters | [1,37] | Strawberry, apple, fruity, sweet | [1] | 2 × 103 | 208 ± 98 a | 69 ± 77 b | 91 ± 252 b |
3-Methylbutanoic acid; pentanoic acid | Carboxylic acids | [9,32,37,39] | Sweaty; unpleasant, pungent | [9,39] | 19; 9 | |||||
C6 | ||||||||||
81.070 | C6H9+ | Terpene fragment or fragments from cis-/trans-hexenal | Others | [41,42] | - | - | (12 ± 12) × 103 a | 337 ± 280 b | 74 ± 68 b | |
83.085 | C6H11+ | Terpene fragment | Others | [41] | - | - | (8 ± 3) × 103 a | (1 ± 1) × 103 b | (1 ± 1) × 103 b | |
85.101 | C6H13+ | Cyclohexane | Others | [43] | Sweet, aromatic | [33] | 728 × 103 | (3 ± 2) × 103 a | 259 ± 220 b | 110 ± 89 b |
97.064 | C6H9O+ | 2,4-Hexadienal | Aldehydes | [1] | Fresh, green, floral, citric | [1] | 277 ± 159 a | 25 ± 14 b | 20 ± 17 b | |
Ethyl furan | Others | [1,43] | Sweet, ethereal | [1,43] | ||||||
99.081 | C6H11O+ | trans-2-Hexenal; cis-3-hexenal | Aldehydes | [1,9,37] | Green, apple, bitter almonds, astringent; green, leaf-like | [1,9] | 1 D | (13 ± 11) × 103 a | 243 ± 240 b | 66 ± 125 b |
101.095 | C6H13O+ | cis-3-Hexen-1-ol; trans-3-hexen-1-ol; cis-2-hexen-1-ol; trans-2-hexen-1-ol | Alcohols | [1,9,10,37] | Green; green grassy, sweet; almond, grassy, astringent; green grassy, leaves, fruity, astringent, bitter | [1,9] | 154 ± 78 a | 57 ± 35 b | 35 ± 31 b | |
Hexanal; 3-methyl pentanal | Aldehydes | [1,9,37] | Green-sweet, green-apple, grassy; | [9] | 0.27 E | |||||
4-Methylpentan-2-one | Ketones | [1,43] | Strawberry, fruity, sweet, ethereal | [1,43] | 470 | |||||
113.059 | C6H9O2+ | Sorbic acid | Carboxylic acids | [18] | - | - | 171 ± 308 a | 10 ± 7 b | 5 ± 4 b | |
5-Ethyl-2-(5H)-furanone | Ketones | [40] | - | - | ||||||
117.091 | C6H13O2+ | Butyl acetate; ethyl butyrate; ethyl isobutyrate | Esters | [1,9,37] | Green, fruity, pungent; sweet, fruity, cheesy; fruity | [1,9] | 29; 8; 5 | 657 ± 488 a | 66 ± 69 b | 110 ± 358 b |
Hexanoic acid | Carboxylic acids | [9,39] | Pungent, rancid, sour, sharp | [9,39] | 127 | |||||
C7–C15 | ||||||||||
93.070 | C7H9+ | Toluene | Others | [30,37,40] | Gasoline vapors | [30,37] | 2 × 103 | 254 ± 223 a | 33 ± 51 b | 7 ± 12 b |
105.090 | C8H9+ | Ethenyl benzene | Others | [1,30] | Gasoline vapors | [30] | 47 | 324 ± 247 a | 48 ± 49 b | 18 ± 13 b |
107.086 | C8H11+ | Ethyl benzene | Others | [1] | Strong | [1] | 39 × 103 | 338 ± 275 a | 75 ± 131 b | 17 ± 27 b |
109.101 | C8H13+ | Methyl norbornene | Others | [18] | - | - | 50 ± 24 a | 29 ± 24 b | 33 ± 20 ab | |
111.080 | C7H11O+ | 2,4-Heptadienal | Aldehydes | [9,39] | Fatty, rancid, nutty | [9,39] | 8 | 86 ± 62 a | 38 ± 32 b | 27 ± 34 b |
113.096 | C7H13O+ | trans-2-Heptenal | Aldehydes | [9] | Oxidized, tallowy, pungent | [9] | 19 | 131 ± 125 a | 30 ± 22 b | 26 ± 30 b |
115.111 | C7H15O+ | Heptanal | Aldehydes | [9,10,39] | Oily, fatty, woody, rancid | [9,39] | 0.19 | 51 ± 31 b | 81 ± 65 a | 77 ± 63 ab |
Heptan-2-one | Ketones | [1,9] | Sweet, fruity, cinnamon | [1,9] | 1 | |||||
121.099 | C9H13+ | 1,2,4-Trimethylbenzene | Others | [1,10] | - | - | 25 × 103 | 78 ± 59 a | 7 ± 13 b | 2 ± 5 b |
C8H9O+ | Acetophenone | Ketones | [40] | - | - | |||||
123.080 | C8H11O+ | 2-Phenylethanol | Alcohols | [10,40] | - | - | 4 ± 2 a | 1 ± 2 b | 1 ± 1 b | |
125.096 | C8H13O+ | cis-1,5-Octadien-3-one; octan-2-one | Ketones | [1,9,37] | Geranium-like; mold, overripe | [1,9] | 34 ± 26 a | 13 ± 11 b | 5 ± 5 b | |
trans,trans-2,4-Octadienal | Aldehydes | [10] | - | - | ||||||
127.111 | C8H15O+ | trans-2-Octenal | Aldehydes | [1,9] | Herbaceous, spicy | [1,9] | 1 | 37 ± 17 a | 17 ± 12 b | 19 ± 13 b |
6-Methyl-5-hepten-2-one; 1-octen-3-one; 3-octen-2-one | Ketones | [1,9,10,37] | Pungent, green fruity, grassy; mushroom, mold, pungent; rose | [1,9,44] | 1 F | |||||
129.091 | C7H13O2+ | 3-Methyl-2-butenyl acetate | Esters | [1] | Pungent | [1] | 16 ± 8 a | 5 ± 4 b | 5 ± 5 b | |
129.127 | C8H17O+ | Octanal | Aldehydes | [9,37,39] | Fatty, sharp, citrus-like, rancid | [9,39] | 0.08 | 27 ± 15 | 41 ± 36 | 59 ± 81 |
6-Methyl-5-hepten-3-ol; 1-octen-3-ol | Alcohols | [9,39] | Perfumery, nutty, perfumery, nutty; mold, earthy | [9,39] | 1 G | |||||
Octan-2-one | Ketones | [9] | Mold, green | [9] | 27 | |||||
131.106 | C7H15O2+ | Propyl butyrate; ethyl 2-methylbutyrate; ethyl 3-methylbutyrate | Esters | [1,9,37] | Pineapple, sharp; fruity; fruity, green, banana | [1,9] | 2 × 103 H | 72 ± 52 a | 21 ± 28 b | 6 ± 6 b |
Heptanoic acid | Carboxylic acids | [9,39] | Rancid, fatty | [9,39] | ||||||
137.132 | C10H17+ | Terpene fragments (α-pinene; β-pinene; limonene; tricyclene; camphene; sabinene; myrcene; β-ocimene) | Others | [10,32] | - | - | 3 × 103; 6 × 103; 130 I | 89 ± 68 a | 37 ± 70 b | 12 ± 18 b |
139.112 | C9H15O+ | trans,trans-2,4-Nonadienal | Aldehydes | [9,37] | Soapy, penetrating, deep-fried | [9] | 0.04 | 19 ± 12 a | 3 ± 1 b | 5 ± 3 b |
139.147 | C10H19+ | 3-Ethyl-1,5-octadiene | Others | [40] | - | - | 82 ± 50 a | 6 ± 5 b | 4 ± 3 b | |
141.127 | C9H17O+ | tran-2-Nonenal; cis-2-nonenal | Aldehydes | [9,36,37] | Paper-like, fatty; green, fatty | [9,36] | 0.02 J | 8 ± 8 a | 3 ± 3 b | 5 ± 4 a |
143.107 | C8H15O2+ | cis-3-Hexenyl acetate; trans-3-hexenyl acetate; 3-methyl-4-penten-1-ol-acetate | Esters | [1,9,10,37] | Green, banana-like; green, banana, green leaves, fruity | [1,9] | 49 ± 25 a | 8 ± 7 b | 3 ± 3 b | |
143.142 | C9H19O+ | Nonanal | Aldehydes | [9,10,37] | Fatty, waxy, pungent | [9] | 0.45 | 44 ± 23 a | 17 ± 11 b | 14 ± 12 b |
Nonan-2-one | Ketones | [1] | Fruity, floral | [1] | 5 | |||||
145.122 | C8H17O2+ | Hexyl acetate; 2-methylpropyl butanoate; ethyl hexanoate | Esters | [1,9,10] | Green, fruity, sweet, apple; unpleasant, winey, fusty | [1,9] | 307 K | 58 ± 36 a | 8 ± 9 b | 4 ± 3 b |
Octanoic acid | Carboxylic acids | [9,39] | Oily, fatty | [9,39] | ||||||
153.125 | C10H17O+ | 2,4-Decadienal; trans, trans-2,4-decadienal; trans, cis-2,4-decadienal | Aldehydes | [9,37] | Strong, fatty; deep-fried; deep-fried | [9] | 0.37 L | 8 ± 3 a | 3 ± 3 b | 3 ± 3 b |
2,3-Dehydro-1,8-cineole | Others | [10] | - | - | ||||||
155.141 | C10H19O+ | trans-2-Decenal | Aldehydes | [9] | Painty, fishy, fatty | [9] | 0.43 | 6 ± 3 a | 3 ± 3 b | 2 ± 4 b |
3,7-Dimethylocta-1,6-dien-3-ol; cis-p-menth-2-en-1-ol | Alcohols | [10] | - | - | ||||||
157.124 | C9H17O2+ | Ethyl cyclohexanecarboxylate | Esters | [9,37] | Aromatic, fruity | [9] | 11 ± 6 a | 1 ± 1 b | 1 ± 1 b | |
157.158 | C10H21O+ | Decanal | Aldehydes | [9,10,43] | Penetrating, sweet, waxy, painty | [9,43] | 0.41 | 5 ± 3 a | 3 ± 3 b | 4 ± 6 ab |
169.123 | C10H17O2+ | trans-4,5-Epoxy-trans-2-decenal | Aldehydes | [9,10,37] | Metallic | [9] | 2 ± 2 a | 0.5 ± 0.4 b | 0.3 ± 0.3 b | |
171.174 | C11H23O+ | Undecanal | Aldehydes | [43] | Fatty, tallowy | [43] | 3 ± 1 a | 0.4 ± 0.4 b | 0.3 ± 0.4 b | |
173.154 | C10H21O2+ | Ethyl octanoate; methyl nonanoate | Esters | [32,36,37] | Green, fruity; - | [36] | 11 ± 24 a | 1 ± 1 b | 0.8 ± 0.9 b | |
183.082 | C13H11O+ | Benzophenone | Others | [40] | - | - | 2 ± 2 a | 0.8 ± 0.4 b | 0.6 ± 0.3 b | |
205.194 | C15H25+ | β-Caryophyllene; copaene; β-selinene; α-farnesene; eremophilene | Others | [10,32,40] | - | - | 23 ± 22 a | 4 ± 7 b | 0.4 ± 0.7 b |
Measured Protonated Mass m/z | Average ± SD (%) | |||
---|---|---|---|---|
Tentative Identification | EVOO (n = 140) | ROO (n = 45) | POO (n = 15) | |
C1–C4 A | ||||
33.033 | Methanol | 46 ± 9 a | 33 ± 14 b | 10 ± 10 c |
43.018 | Esters | 5 ± 3 b | 6 ± 3 a | 5 ± 1 ab |
45.034 | Acetaldehyde | 8 ± 3 b | 16 ± 6 a | 30 ± 17 a |
47.012 | Formic acid | (4 ± 5) × 10−1 b | 5 ± 4 a | 14 ± 7 a |
47.049 | Ethanol | 5 ± 5 | 5 ± 4 | 3 ± 2 |
57.033 | 2-Propenal | 6 ± 5 | 6 ± 8 | 3 ± 3 |
59.049 | Propanal; acetone | 2 ± 2 b | 5 ± 3 a | 9 ± 3 a |
61.028 | Acetic acid | 4 ± 3 b | 7 ± 3 a | 6 ± 3 a |
63.026 | Dimethyl sulfide | (1 ± 2) × 10−1 a | (2 ± 2) × 10−2 b | (1 ± 0) × 10−2 b |
73.064 | Butan-2-one | 1 ± 1 b | 2 ± 1 a | 3 ± 2 a |
75.044 | Propanoic acid; methyl acetate | 3±2 a | 1±0 b | (3 ± 3) × 10−1 c |
79.021 | Dimethyl sulfoxide | (8 ± 7) × 10−2 | (1 ± 1) × 10−1 | (6 ± 2) × 10−2 |
89.059 | Ethyl acetate; butanoic acid | (4 ± 3) × 10−1 a | (2 ± 2) × 10−1 b | (2 ± 5) × 10−1 c |
C5–C6 | ||||
81.070 | Terpene fragment or fragments from cis-/trans-hexenal | 2 ± 2 a | (2 ± 1) × 10−1 b | (7 ± 5) × 10−2 b |
83.085 | Terpene fragment | 1 ± 0 a | 1 ± 0 b | 1 ± 0 b |
85.064 | trans-2-Pentenal; trans-2-methyl-2-butenal; 1-penten-3-one | 1 ± 1 a | (1 ± 1) × 10−1 b | (1 ± 0) × 10−1 b |
85.099 | Cyclohexane | (4 ± 3) × 10−1 a | (9 ± 4) × 10−2 b | (9 ± 4) × 10−2 b |
87.081 | 3-Penten-2-ol; 2-methyl-3-buten-2-ol; 2-methylbutanal; 3-methylbutanal; pentanal; 3-pentanone | 2 ± 1 a | (4 ± 2) × 10−1 b | (3 ± 1) × 10−1 b |
97.064 | 2,4-Hexadienal; ethyl furan | (4 ± 2) × 10−2 a | (1 ± 1) × 10−2 b | (2 ± 1) × 10−2 b |
99.081 | trans-2-Hexenal; cis-3-hexenal | 2 ± 2 a | (1 ± 1) × 10−1 b | (1 ± 2) × 10−1 b |
101.095 | cis-3-Hexen-1-ol; trans-3-hexen-1-ol; cis-2-hexen-1-ol; trans-2-hexen-1-ol; hexanal; 3-methyl pentanal; 4-methylpentan-2-one | (5 ± 2) × 10−2 b | (6 ± 7) × 10−2 b | (1 ± 1) × 10−1 a |
103.075 | Ethyl propionate; 3-methylbutanoic acid; pentanoic acid | (3 ± 1) × 10−2 b | (2 ± 2) × 10−2 b | (2 ± 6) × 10−1 a |
113.059 | Sorbic acid; 5-ethyl-2-(5H)-furanone | (2 ± 4) × 10−2 a | (4 ± 3) × 10−3 b | (4 ± 5) × 10−3 b |
117.091 | Butyl acetate; ethyl butyrate; ethyl isobutyrate; hexanoic acid | (9 ± 7) × 10−2 a | (2 ± 1) × 10−2 b | (2 ± 9) × 10−1 b |
C7–C15 | ||||
93.070 | Toluene | (3 ± 4) × 10−2 a | (1 ± 1) × 10−2 b | (1 ± 1) × 10−2 b |
105.090 | Ethenyl benzene | (4 ± 2) × 10−2 a | (2 ± 2) × 10−2 b | (2 ± 1) × 10−2 b |
107.086 | Ethyl benzene | (4 ± 3) × 10−2 a | (2 ± 2) × 10−2 b | (2 ± 5) × 10−2 b |
109.101 | Methyl norbornene | (1 ± 0) × 10−2 c | (1 ± 1) × 10−2 b | (3 ± 2) × 10−2 a |
111.080 | 2,4-Heptadienal | (1 ± 1) × 10−2 b | (2 ± 1) × 10−2 a | (2 ± 1) × 10−2 ab |
113.096 | trans-2-Heptenal | (2 ± 1) × 10−2 ab | (1 ± 1) × 10−2 b | (2 ± 1) × 10−2 a |
115.111 | Heptanal; heptan-2-one | (1 ± 0) × 10−2 b | (6 ± 1) × 10−2 a | (1 ± 1) × 10−1 a |
121.099 | 1,2,4-Trimethylbenzene; acetophenone | (9 ± 6) × 10−3 a | (2 ± 3) × 10−3 b | (3 ± 11) × 10−3 b |
123.080 | 2-Phenylethanol | (6 ± 2) × 10−4 a | (5 ± 6) × 10−4 b | (9 ± 8) × 10−4 a |
125.096 | cis-1,5-Octadien-3-one; octan-2-one; trans, trans-2,4-octadienal | (5 ± 3) × 10−3 | (6 ± 5) × 10−3 | (4 ± 2) × 10−3 |
127.111 | trans-2-Octenal; 6-methyl-5-hepten-2-one; 1-octen-3-one; 3-octen-2-one | (5 ± 3) × 10−3 c | (9 ± 7) × 10−3 b | (2 ± 1) × 10−2 a |
129.091 | 3-Methyl-2-butenyl acetate | (2 ± 1) × 10−3 ab | (3 ± 5) × 10−3 b | (6 ± 9) × 10−3 a |
129.127 | Octanal; 6-methyl-5-hepten-3-ol; 1-octen-3-ol; octan-2-one | (4 ± 2) × 10−3 b | (3 ± 6) × 10−2 a | (9 ± 15) × 10−2 a |
131.106 | Propyl butyrate; ethyl 2-methylbutyrate; ethyl 3-methylbutyrate; heptanoic acid | (9 ± 5) × 10−3 a | (7 ± 4) × 10−3 b | (7 ± 12) × 10−3 b |
137.132 | Terpene fragments (α-pinene; β-pinene; limonene; tricyclene; camphene; sabinene; myrcene; β-ocimene) | (1 ± 1) × 10−2 b | (2 ± 8) × 10−2 a | (1 ± 2) × 10−2 ab |
139.112 | trans,trans-2,4-Nonadienal | (3 ± 2) × 10−3 b | (1 ± 2) × 10−3 c | (6 ± 4) × 10−3 a |
139.147 | 3-Ethyl-1,5-octadiene | (1 ± 1) × 10−2 a | (2 ± 1) × 10−3 b | (5 ± 3) × 10−3 b |
141.127 | tran-2-Nonenal; cis-2-nonenal; cis-3-nonenal | (1 ± 1) × 10−3 b | (1 ± 1) × 10−3 b | (5 ± 2) × 10−3 a |
143.107 | cis-3-Hexenyl acetate; trans-3-hexenyl acetate; 3-methyl-4-penten-1-ol-acetate | (7 ± 5) × 10−3 a | (3 ± 3) × 10−3 b | (2 ± 1) × 10−3 b |
143.142 | Nonanal; nonan-2-one | (6 ± 4) × 10−3 b | (1 ± 1) × 10−2 ab | (1 ± 1) × 10−2 a |
145.122 | Hexyl acetate; 2-methylpropyl butanoate; ethyl hexanoate; octanoic acid | (8 ± 4) × 10−3 a | (3 ± 1) × 10−3 b | (4 ± 5) × 10−3 b |
153.125 | 2,4-Decadienal; trans, trans-2,4-decadienal; trans, cis-2,4-decadienal; 2,3-dehydro-1,8-cineole | (1 ± 0) × 10−3 ab | (1 ± 1) × 10−3 b | (2 ± 3) × 10−3 a |
155.141 | trans-2-Decenal; 3,7-dimethylocta-1,6-dien-3-ol; cis-p-menth-2-en-1-ol | (1 ± 0) × 10−3 ab | (1 ± 1) × 10−3 b | (2 ± 2) × 10−3 a |
157.124 | Ethyl cyclohexanecarboxylate | (2 ± 1) × 10−3 a | (7 ± 8) × 10−4 b | (1 ± 1) × 10−3 a |
157.158 | Decanal | (7 ± 5) × 10−4 b | (2 ± 4) × 10−3 b | (6 ± 10) × 10−3 a |
169.123 | trans-4,5-Epoxy-trans-2-decenal | (3 ± 2) × 10−4 a | (2 ± 4) × 10−4 b | (3 ± 3) × 10−4 ab |
171.174 | Undecanal | (4 ± 3) × 10−4 a | (1 ± 2) × 10−4 b | (4 ± 6) × 10−4 b |
173.154 | Ethyl octanoate; methyl nonanoate | (1 ± 3) × 10−3 a | (4 ± 3) × 10−4 b | (6 ± 5) × 10−4 b |
183.082 | Benzophenone | (4 ± 7) × 10−4 b | (4 ± 3) × 10−4 a | (7 ± 6) × 10−4 a |
205.194 | β-Caryophyllene; copaene; β-selinene; α-farnesene; eremophilene | (3 ± 3) × 10−3 a | (1 ± 1) × 10−3 b | (3 ± 3) × 10−4 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Alewijn, M.; van Ruth, S.M. From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor. Molecules 2020, 25, 2469. https://doi.org/10.3390/molecules25112469
Yan J, Alewijn M, van Ruth SM. From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor. Molecules. 2020; 25(11):2469. https://doi.org/10.3390/molecules25112469
Chicago/Turabian StyleYan, Jing, Martin Alewijn, and Saskia M. van Ruth. 2020. "From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor" Molecules 25, no. 11: 2469. https://doi.org/10.3390/molecules25112469
APA StyleYan, J., Alewijn, M., & van Ruth, S. M. (2020). From Extra Virgin Olive Oil to Refined Products: Intensity and Balance Shifts of the Volatile Compounds versus Odor. Molecules, 25(11), 2469. https://doi.org/10.3390/molecules25112469