Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Structure Elucidation
2.3. Microbiology
3. Materials and Methods
3.1. Chemistry
3.1.1. Materials and General Methods
3.1.2. General Procedure for the Synthesis of 3,4-Dihydroxy-1-methyl-9H-xanthen-9-one (3) and 3,4,6-Trihydroxy-1-methyl-9H-xanthen-9-one (4)
3.1.3. General Procedure for the Synthesis of 2-Bromo-3,4-dimethoxy-1-methyl-9H-xanthen-9-one (5) and 2-Bromo-3,4,6-trimethoxy-1-methyl-9H-xanthen-9-one (6)
3.1.4. Synthesis of 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7) and 1-(Dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8)
3.1.5. Synthesis of 3,4-Dimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (9) and 3,4,6-trimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (10)
3.1.6. Synthesis of 3,4-Dimethoxy-9-oxo-9H-xanthene-1-carboxylic acid (11) and 3,4,6-Trimethoxy-9-oxo-9H-xanthene-1-carboxylic acid (12)
3.1.7. General Procedure for the Synthesis of Methyl 3,4-dimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (13) and Methyl 3,4,6-trimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (14)
3.1.8. Synthesis of (Z)-3,4-Dimethoxy-9-oxo-9H-xanthene-1-carbaldehyde oxime (15)
3.2. X-Ray Crystallography
3.2.1. Crystal Structure of 1-Methyl-3,4-dimethoxy-9H-xanthen-9-one (1)
3.2.2. Crystal Structure of 1-(Dibromomethyl)-3,4-dimethoxy-9H-xanthen-9-one (7)
3.2.3. Crystal Structure of 1-(Dibromomethyl)-3,4,6-trimethoxy-9H-xanthen-9-one (8)
3.3. Microbiology
3.3.1. Microorganism Strains and Growth Conditions
3.3.2. Antibacterial Susceptibility Testing
3.3.3. Antifungal Activity
3.3.4. Antibiotic Synergy Testing
3.3.5. Antifungal Synergy Testing
3.3.6. Germ Tube Inhibition Assay
3.3.7. Biofilm Formation Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Loureiro, D.R.P.; Soares, J.X.; Costa, J.C.; Magalhães, Á.F.; Azevedo, C.M.G.; Pinto, M.M.M.; Afonso, C.M.M. Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review. Molecules 2019, 24, 243. [Google Scholar] [CrossRef] [Green Version]
- Baldry, M.; Nielsen, A.; Bojer, M.S.; Zhao, Y.; Friberg, C.; Ifrah, D.; Glasser Heede, N.; Larsen, T.O.; Frøkiær, H.; Frees, D.; et al. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Lateff, A.; Klemke, C.; König, G.M.; Wright, A.D. Two New Xanthone Derivatives from the Algicolous Marine Fungus Wardomyces anomalus. J. Nat. Prod. 2003, 66, 706–708. [Google Scholar] [CrossRef]
- Liu, F.; Cai, X.-L.; Yang, H.; Xia, X.-K.; Guo, Z.-Y.; Yuan, J.; Li, M.-F.; She, Z.-G.; Lin, Y.-C. The Bioactive Metabolites of the Mangrove Endophytic Fungus Talaromyces sp. ZH-154 Isolated from Kandelia candel (L.) Druce. Planta Med. 2010, 76, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Kossuga, M.H.; Romminger, S.; Xavier, C.; Milanetto, M.C.; Valle, M.Z.d.; Pimenta, E.F.; Morais, R.P.; Carvalho, E.d.; Mizuno, C.M.; Coradello, L.F.C.; et al. Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Rev. Bras. De Farmacogn. 2012, 22, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-L.; Li, X.-M.; Liu, H.; Meng, L.-H.; Wang, B.-G. Two New Diphenylketones and a New Xanthone from Talaromyces islandicus EN-501, an Endophytic Fungus Derived from the Marine Red Alga Laurencia okamurai. Mar. Drugs 2016, 14, 223. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ding, W.; Wang, R.; Du, Y.; Liu, H.; Kong, X.; Li, C. Identification and Bioactivity of Compounds from the Mangrove Endophytic Fungus Alternaria sp. Mar. Drugs 2015, 13, 4492. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.; Wang, C.; Wei, M.; Gu, Y.; Xia, X.; She, Z.; Lin, Y. Structure elucidation of two new xanthone derivatives from the marine fungus Penicillium sp. (ZZF 32#) from the South China Sea. Magn. Reson. Chem. 2008, 46, 1066–1069. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Z.-G.; Song, B.-B.; Chen, C.-H.; Xiao, W.-W.; Hu, B.; Wang, J.-W.; Jiang, X.-B.; Zhu, Y.-H.; Wang, H.-J. Advances in the Study of the Structures and Bioactivities of Metabolites Isolated from Mangrove-Derived Fungi in the South China Sea. Mar. Drugs 2013, 11, 3601. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Canning, C.B.; Bhargava, K.; Sun, X.; Zhu, W.; Zhou, N.; Zhang, Y.; Zhou, K. Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorganic Med. Chem. Lett. 2015, 25, 2181–2183. [Google Scholar] [CrossRef]
- Sousa, M.E.; Pinto, M.M.M. Synthesis of Xanthones: An Overview. Curr. Med. Chem. 2005, 12, 2447–2479. [Google Scholar] [CrossRef]
- Palmeira, A.; Vasconcelos, M.H.; Paiva, A.; Fernandes, M.X.; Pinto, M.; Sousa, E. Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones. Biochem. Pharm. 2012, 83, 57–68. [Google Scholar] [CrossRef]
- Martins, E.; Silva, V.; Lemos, A.; Palmeira, A.; Puthongking, P.; Sousa, E.; Rocha-Pereira, C.; Ghanem, C.I.; Carmo, H.; Remião, F.; et al. Newly Synthesized Oxygenated Xanthones as Potential P-Glycoprotein Activators: In Vitro, Ex Vivo, and In Silico Studies. Molecules 2019, 24, 707. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.; Lima, R.T.; Sousa, D.; Gomes, A.S.; Palmeira, A.; Seca, H.; Choosang, K.; Pakkong, P.; Bousbaa, H.; Pinto, M.M.; et al. Screening a Small Library of Xanthones for Antitumor Activity and Identification of a Hit Compound which Induces Apoptosis. Molecules 2016, 21, 81. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; Palmeira, A.; Carmo, H.; Barbosa, D.J.; Gameiro, M.; Gomes, A.; Paiva, A.M.; Sousa, E.; Pinto, M.; Bastos, M.d.L.; et al. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. Arch. Toxicol. 2015, 89, 1783–1800. [Google Scholar] [CrossRef]
- Bessa, L.J.; Palmeira, A.; Gomes, A.S.; Vasconcelos, V.; Sousa, E.; Pinto, M.; Costa, P.M.d. Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus. Microb. Drug Resist. 2015, 21, 404–415. [Google Scholar] [CrossRef]
- Silva, R.; Sousa, E.; Carmo, H.; Palmeira, A.; Barbosa, D.J.; Gameiro, M.; Pinto, M.; De Lourdes Bastos, M.; Remião, F. Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Arch. Toxicol. 2014, 88, 937–951. [Google Scholar] [CrossRef]
- Silva, V.; Gil-Martins, E.; Rocha-Pereira, C.; Lemos, A.; Palmeira, A.; Puthongking, P.; Sousa, E.; De Lourdes Bastos, M.; Remião, F.; Silva, R. Oxygenated xanthones as P-glycoprotein modulators at the intestinal barrier: In vitro and docking studies. Med. Chem. Res. 2020, 29, 1041–1057. [Google Scholar] [CrossRef]
- Resende, D.; Pereira-Terra, P.; Inácio, Â.; Costa, P.; Pinto, E.; Sousa, E.; Pinto, M. Lichen Xanthones as Models for New Antifungal Agents. Molecules 2018, 23, 2617. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Raimundo, L.; Soares, J.; Loureiro, J.B.; Leão, M.; Ramos, H.; Monteiro, M.N.; Lemos, A.; Moreira, J.; Pinto, M.; et al. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma. Cancer Lett. 2019, 446, 90–102. [Google Scholar] [CrossRef]
- Rho, H.S.; Ko, B.-S.; Kim, H.K.; Ju, Y.-S. Synthesis of 3-Bromo Derivatives of Flavones. Synth. Commun. 2002, 32, 1303–1310. [Google Scholar] [CrossRef]
- Lemos, A.; Gomes, A.S.; Loureiro, J.B.; Brandão, P.; Palmeira, A.; Pinto, M.M.M.; Saraiva, L.; Sousa, M.E. Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. Molecules 2019, 24, 1975. [Google Scholar] [CrossRef] [Green Version]
- Travis, B.R.; Sivakumar, M.; Hollist, G.O.; Borhan, B. Facile Oxidation of Aldehydes to Acids and Esters with Oxone. Org. Lett. 2003, 5, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Gales, L.; Damas, A.M. Xanthones-A Structural Perspective. Curr. Med. Chem. 2005, 12, 2499–2515. [Google Scholar] [CrossRef]
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Pierce, C.G.; Chaturvedi, A.K.; Lazzell, A.L.; Powell, A.T.; Saville, S.P.; McHardy, S.F.; Lopez-Ribot, J.L. A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. npj Biofilms Microbiomes 2015, 1, 15012. [Google Scholar] [CrossRef] [PubMed]
- Roscetto, E.; Contursi, P.; Vollaro, A.; Fusco, S.; Notomista, E.; Catania, M.R. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Sci. Rep. 2018, 8, 17570. [Google Scholar] [CrossRef]
- Dieu, A.; Millot, M.; Champavier, Y.; Mambu, L.; Chaleix, V.; Sol, V.; Gloaguen, V. Uncommon Chlorinated Xanthone and Other Antibacterial Compounds from the Lichen Cladonia incrassata. Planta Med. 2014, 80, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Dayan, F.E.; Romagni, J.G. Lichens as a potential source of pesticides. Pestic. Outlook 2001, 12, 229–232. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Simões, R.R.; Aires-de-Sousa, M.; Conceição, T.; Antunes, F.; Da Costa, P.M.; De Lencastre, H. High Prevalence of EMRSA-15 in Portuguese Public Buses: A Worrisome Finding. PLoS ONE 2011, 6, e17630. [Google Scholar] [CrossRef] [Green Version]
- Bessa, L.J.; Barbosa-Vasconcelos, A.; Mendes, Â.; Vaz-Pires, P.; Martins da Costa, P. High prevalence of multidrug-resistant Escherichia coli and Enterococcus spp. in river water, upstream and downstream of a wastewater treatment plant. J. Water Health 2014, 12, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.; Bessa, L.; Buttachon, S.; Costa, P.; Buaruang, J.; Dethoup, T.; Silva, A.; Kijjoa, A. Antibacterial and Antibiofilm Activities of Tryptoquivalines and Meroditerpenes Isolated from the Marine-Derived Fungi Neosartorya paulistensis, N. laciniosa, N. tsunodae, and the Soil Fungi N. fischeri and N. siamensis. Mar. Drugs 2014, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard-10th ed.; Document M07-A10; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts, Approved Standard—3rd ed.; Document M27-A3; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, Approved Standard—2nd ed.; Document M38-A2; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef]
- Silva, S.; Henriques, M.; Martins, A.; Oliveira, R.; Williams, D.; Azeredo, J. Biofilms of non-Candida albicans Candida species: Quantification, structure and matrix composition. Med. Mycol. 2009, 47, 681–689. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds 1–33 are available from the authors. |
Position | δH (ppm); J (Hz) | ||||
---|---|---|---|---|---|
3 | 4 | 5 | 6 | 8 | |
H-2 | 6.68, s | 6.62, s | - | - | 7.74, s |
H-5 | 7.57, dd (8.6, 1.1) | 6.84–6.77, m | 7.52, dd (8.6, 1.1, 0.5) | 7.52, d (2.4) | 6.97–6.92, m |
H-6 | 7.78, ddd (8.6, 7.1, 1.8) | - | 7.70, ddd (8.6, 7.1, 1.7) | - | - |
H-7 | 7.40, ddd (8.0, 7.1, 1.1) | 6.84–6.77, m | 7.37, ddd (8.1, 7.1, 1.1) | 6.94, dd (8.8, 2.4) | 6.97–6.92, m |
H-8 | 8.11, dd (8.0, 1.8) | 7.93, d (9.1) | 8.27, ddd (8.1, 1.7, 0.5) | 8.18, d (8.8) | 8.20, d (7.9, 1.3) |
1-CH3 | 2.68, s | 2.65, s | 3.05, s | 3.06, s | - |
3-OH | 10.34, s | - | - | - | - |
4-OH | 9.18, s | - | - | - | - |
6-OH | - | - | - | - | - |
3-OCH3 | - | - | 4.04, s | 4.06, s | 4.10, s |
4-OCH3 | - | - | 4.07, s | 4.03, s | 4.04, s |
6-OCH3 | - | - | - | 3.94, s | 3.95, s |
H-1′ | - | - | - | - | 8.98, s |
CHO | - | - | - | - | - |
COOCH3 | - | - | - | - | - |
NOH | - | - | - | - | - |
10 | 12 | 13 | 14 | 15 | |
H-2 | 7.52, s | 8.40, s | 6.99, s | 6.98–6.90, m | 7.43, s |
H-5 | 6.99–6.94, m | 6.89–7.10, m | 7.59, d (7.5) | 6.98–6.90, m | 7.67, brdd (7.9) |
H-6 | - | - | 7.75, ddd (8.8, 7.1, 1.7) | - | 7.85, ddd, (7.5, 5.8, 1.7) |
H-7 | 6.99–6.94, m | 6.89–7.10, m | 7.40, ddd (8.1, 7.2, 1.1) | 6.98–6.90, m | 7.46, ddd (8.0, 7.5, 1.0) |
H-8 | 8.20, d (9.4) | 8.31, d (8.8) | 8.28, dd (8.8, 1.7) | 8.17, d (8.8) | 8.14, dd (7.9, 1.5) |
1-CH3 | - | - | - | - | - |
3-OH | - | - | - | - | - |
4-OH | - | - | - | - | - |
6-OH | - | - | - | - | - |
3-OCH3 | 4.05, s, | 4.12, s | 4.04, s | 4.03, s | 3.99, s |
4-OCH3 | 4.09, s | 4.10, s | 4.06, s | 4.00, s | 3.94, s |
6-OCH3 | 3.95, s | 3.99, s | - | 3.93, s | - |
H-1′ | - | - | - | - | 9.31, s |
CHO | 11.23, s | - | - | - | - |
COOCH3 | - | - | - | 4.03, s | - |
NOH | - | - | - | - | 11.44, s |
Position | δC (ppm) | ||||
---|---|---|---|---|---|
3 | 4 | 5 | 6 | 8 | |
C-1 | 131.2 | 130.7 | 137.0 | 136.8 | 139.6 |
C-2 | 115.2 | 114.9 | 117.8 | 116.5 | 111.9 |
C-3 | 150.4 | 149.8 | 154.3 | 153.8 | 156.3 |
C-4 | 130.7 | 130.7 | 139.8 | 139.7 | 137.6 |
C-4a | 147.5 | 147.4 | 151.6 | 151.4 | 150.5 |
C-5 | 117.5 | 101.6 | 117.6 | 99.7 | 99.8 |
C-6 | 134.4 | 162.9 | 134.6 | 164.8 | 165.4 |
C-7 | 123.7 | 113.3 | 124.4 | 113.6 | 114.0 |
C-8 | 126.0 | 127.9 | 127.1 | 128.5 | 128.6 |
C-8a | 121.8 | 114.9 | 122.7 | 117.7 | 116.1 |
C-9 | 176.9 | 176.2 | 177.8 | 176.9 | 177.1 |
C-9a | 112.8 | 112.6 | 117.8 | 118.0 | 111.0 |
C-10a | 154.7 | 156.5 | 154.9 | 156.6 | 157.0 |
C-1′ | - | - | - | - | 39.5 |
1-CH3 | 22.4 | 22.4 | 21.7 | 21.5 | - |
3-OCH3 | - | - | 62.0 | 61.9 | 56.7 |
4-OCH3 | - | - | 61.4 | 61.2 | 61.8 |
6-OCH3 | - | - | - | 55.9 | 56.1 |
Position | 10 | 12 | 13 | 14 | 15 |
C-1 | 133.6 | 128.7 | 129.8 | 129.7 | 129.7 |
C-2 | 108.3 | 115.5 | 108.4 | 107.7 | 106.8 |
C-3 | 156.0 | 156.3 | 156.3 | 156.5 | 156.1 |
C-4 | 140.7 | 140.0 | 138.0 | 137.5 | 136.9 |
C-4a | 150.9 | 152.1 | 150.5 | 150.5 | 150.7 |
C-5 | 100.1 | 99.3 | 118.5 | 100.4 | 121.4 |
C-6 | 165.5 | 157.4 | 135.5 | 165.3 | 135.3 |
C-7 | 114.2 | 117.9 | 121.9 | 113.9 | 124.4 |
C-8 | 128.3 | 129.2 | 130.8 | 128.3 | 126.1 |
C-8a | 115.9 | 113.8 | 124.9 | 115.3 | 117.8 |
C-9 | 177.1 | 178.8 | 176.0 | 174.7 | 177.0 |
C-9a | 116.4 | 114.1 | 114.3 | 113.9 | 113.2 |
C-10a | 157.5 | 165.6 | 157.3 | 157.8 | 154.7 |
C-1′ | 193.1 | 166.9 | 170.4 | 170.1 | 147.9 |
1-CH3 | - | - | - | - | - |
3-OCH3 | 56.7 | 61.9 | 62.3 | 61.8 | 56.3 |
4-OCH3 | 61.9 | 56.9 | 57.2 | 56.7 | 61.1 |
6-OCH3 | 56.1 | 56.4 | - | 56.1 | - |
Comp. | R1 | R2 | Comp. | R1 | R2 | Comp. | R1 | R2 |
---|---|---|---|---|---|---|---|---|
16 | CHO | OH | 22 | OCH3 | 28 | OCH3 | ||
17 | CH2OH | OCH3 | 23 | OCH3 | 29 | OH | ||
18 | OCH3 | 24 | OCH3 | 30 | OH | |||
19 | OCH3 | 25 | OCH3 | 31 | OH | |||
20 | OCH3 | 26 | OCH3 | 32 | OH | |||
21 | OCH3 | 27 | OCH3 | 33 | OH |
C. Albicans ATCC 10231 | A. Fumigatus ATCC 46645 | T. Rubrum FF5 | M. Canis FF1 | E. Floccosum FF9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
3 | > 128 | > 128 | > 128 | > 128 | 16 | 64 | 16 | 16 | 16 | 64 |
4 | > 128 | > 128 | > 128 | > 128 | 128 | > 128 | > 128 | > 128 | > 128 | > 128 |
13 | > 128 | > 128 | > 128 | > 128 | 128 | > =128 | > 128 | > 128 | > 128 | > 128 |
23 | > 128 | > 128 | > 128 | > 128 | 128 | > 128 | > 128 | > 128 | > 128 | > 128 |
24 | 128 | > 128 | > 128 | > 128 | > 128 | > 128 | > 128 | > 128 | > 128 | > 128 |
26 | > 128 | > 128 | > 128 | > 128 | 32 | > 128 | 32 | 64 | 32 | > 128 |
27 | >=128 | > 128 | > 128 | > 128 | 64 | 64 | 32 | >128 | 64 | > 128 |
31 | > 128 | > 128 | > 128 | > 128 | 128 | > 128 | > 128 | > 128 | 128 | > 128 |
Zone of Inhibition in mm | |||||||
---|---|---|---|---|---|---|---|
E. coli ATCC 25922 | E. coli SA/2 | P. Aeruginosa ATCC 27853 | E. Faecalis ATCC 29212 | E. Faecalis B3/101 (VRE) | S. Aureus ATCC 29213 | S. Aureus 66/1 (MRSA) | |
7 ** | 8 | 9 | 0 | 9 | 9 | 9 | 10 |
8 | 8 | 8 | 8 | 10 | 8 | 11 | 11 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 8 |
20 ** | 8 | 9 | 0 | 9 | 9 | 0 | 0 |
26 | 10 | 9.5 | 0 | 8.5 | 8.5 | 9 | 9 |
27 | 0 | 0 | 0 | 0 | 0 | 9.5 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resende, D.I.S.P.; Pereira-Terra, P.; Moreira, J.; Freitas-Silva, J.; Lemos, A.; Gales, L.; Pinto, E.; de Sousa, M.E.; da Costa, P.M.; Pinto, M.M.M. Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity. Molecules 2020, 25, 2405. https://doi.org/10.3390/molecules25102405
Resende DISP, Pereira-Terra P, Moreira J, Freitas-Silva J, Lemos A, Gales L, Pinto E, de Sousa ME, da Costa PM, Pinto MMM. Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity. Molecules. 2020; 25(10):2405. https://doi.org/10.3390/molecules25102405
Chicago/Turabian StyleResende, Diana I. S. P., Patrícia Pereira-Terra, Joana Moreira, Joana Freitas-Silva, Agostinho Lemos, Luís Gales, Eugénia Pinto, Maria Emília de Sousa, Paulo Martins da Costa, and Madalena M. M. Pinto. 2020. "Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity" Molecules 25, no. 10: 2405. https://doi.org/10.3390/molecules25102405
APA StyleResende, D. I. S. P., Pereira-Terra, P., Moreira, J., Freitas-Silva, J., Lemos, A., Gales, L., Pinto, E., de Sousa, M. E., da Costa, P. M., & Pinto, M. M. M. (2020). Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity. Molecules, 25(10), 2405. https://doi.org/10.3390/molecules25102405