Wide-Antimicrobial Spectrum of Picolinium Salts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Physicochemical Properties of Picolinium Salts
2.2. Antimicrobial Activity of Picolinium Salts
2.3. Cytotoxic Effect on Mammalian Cells
3. Materials and Methods
3.1. General Synthetic Data
3.1.1. General Procedure for the Synthesis of Quaternary Ammonium Salts.
3.1.2. Determination of Lipophilicity Expressed as Clog k or Clog p
3.1.3. Conductivity Measurements
3.2. The biological Evaluation of Picolinium Salts
3.2.1. Evaluation of Antibacterial Activity
3.2.2. Evaluation of Antifungal Activity
3.2.3. Evaluation of Virucidal Activity
3.2.4. Cell Viability Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AB | Acinetobacter baumannii |
ACN | acetonitrile |
ASVE | Aspergillus versicolor |
AUME | Aureobasidium melanogenum |
BIDI | Bisifusarium dimerum |
BL | Klebsiella pneumoniae |
CAPA | Candida parapsilosis sensu stricto |
CMC | critical micelle concentration |
EC | Escherichia coli |
En | Vancomycin-resistant enterococci |
ESBL | extended spectrum β-lactamase producing Klebsiella pneumoniae |
EXDE | Exophiala dermatitidis |
HPLC-MS | high-performance liquid chromatography coupled with mass spectrometry |
HRMS | high resolution mass spectrometry |
MIC | minimum inhibitory concentration |
MBC | minimum bactericidal concentration; |
MRSA | Methicillin-resistant Staphylococcus aureus |
MTT | 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide |
NMR | nuclear magnetic resonance |
PECH | Penicillium chrysogenum |
QAS | quaternary ammonium salts |
RHMU | Rhodotorula mucilaginosa |
SA | Staphylococcus aureus |
SEM | standard deviation |
SE | Staphylococcus epidermis |
SM | Stenotrophomonas maltophilia |
VZV | Varicella zoster virus |
YB | Yersinia bercovieri |
References
- Kuca, K.; Kivala, M.; Dohnal, V. A general method for the quaternization of N,N-dimethyl benzylamines with long chain n-alkylbromides. J. Appl. Biomed. 2004, 2, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Augusta, S.; Gruber, H.F.; Streichsbier, F. Synthesis and antibacterial activity of immobilized quaternary ammonium salts. J. Appl. Polym. Sci. 1994, 53, 1149–1163. [Google Scholar] [CrossRef]
- Grenoble, Z.; Baldelli, S. Adsorption of the Cationic Surfactant Benzyldimethylhexadecylammonium Chloride at the Silica–Water Interface and Metal Salt Effects on the Adsorption Kinetics. J. Phys. Chem. B 2012, 117, 259–272. [Google Scholar] [CrossRef]
- Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, M.A.; Comelles, F. Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution. Langmuir 2013, 29, 2536–2545. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Marek, J.; Stodulka, P.; Cabal, J.; Soukup, O.; Pohanka, M.; Korabecny, J.; Musilek, K.; Kuca, K. Preparation of the Pyridinium Salts Differing in the Length of the N-Alkyl Substituent. Molecules 2010, 15, 1967–1972. [Google Scholar] [CrossRef] [Green Version]
- Marek, J.; Stodulka, P.; Soukup, O.; Musilek, K.; Cabal, J.; Ramalho, T.C. Synthesis of the Isoquinolinium Salts Differing in the Length of the Side Alkylating Chain. Mil. Med. Sci. Lett. 2012, 81, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Obłąk, E.; Piecuch, A.; Guz-Regner, K.; Dworniczek, E. Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiol. Lett. 2013, 350, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Marek, J.; Joskova, V.; Dolezal, R.; Soukup, O.; Benkova, M.; Fucikova, A.; Malinak, D.; Bostik, V.; Kuca, K. Synthesis, Antimicrobial Effect and Surface Properties of Hydroxymethylsubstituted Pyridinium Salts. Lett. Drug Des. Discov. 2018, 15, 828–842. [Google Scholar] [CrossRef]
- Shtyrlin, N.; Sapozhnikov, S.V.; Galiullina, A.S.; Kayumov, A.R.; Bondar, O.V.; Mirchink, E.P.; Isakova, E.B.; Firsov, A.A.; Balakin, K.V.; Shtyrlin, Y.G. Synthesis and Antibacterial Activity of Quaternary Ammonium 4-Deoxypyridoxine Derivatives. BioMed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Marek, J.; Malinak, D.; Dolezal, R.; Soukup, O.; Pasdiorova, M.; Dolezal, M.; Ramalho, T.C. Synthesis and Disinfection Effect of the Pyridine-4-aldoxime Based Salts. Molecules 2015, 20, 3681–3696. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ghosh, K.K.; Marek, J.; Ramalho, T.C. Hydrolysis of carboxylate and phosphate esters using monopyridinium oximes in cationic micellar media. Int. J. Chem. Kinet. 2011, 43, 569–578. [Google Scholar] [CrossRef]
- Singh, N.; Karpichev, Y.; Gupta, B.; Satnami, M.L.; Marek, J.; Ramalho, T.C.; Ghosh, K.K. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. J. Phys. Chem. B 2013, 117, 3806–3817. [Google Scholar] [CrossRef] [PubMed]
- Salajkova, S.; Sramek, M.; Malinak, D.; Havel, F.; Musilek, K.; Benkova, M.; Soukup, O.; Vasicova, P.; Prchal, L.; Dolezal, R.; et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity. J. Biophotonics 2019, 12, e201900024. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, C.J.; Hanlon, G.W.; Denyer, S.P. Action of Disinfectant Quaternary Ammonium Compounds against Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 51, 296–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadhav, M.; Kalhapure, R.S.; Rambharose, S.; Mocktar, C.; Govender, T. Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants. J. Ind. Eng. Chem. 2017, 47, 405–414. [Google Scholar] [CrossRef]
- Malinak, D.; Dolezal, R.; Marek, J.; Salajkova, S.; Soukup, O.; Vejsová, M.; Korabecny, J.; Honegr, J.; Penhaker, M.; Musilek, K.; et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: Synthesis and antimicrobial activity. Bioorganic Med. Chem. Lett. 2014, 24, 5238–5241. [Google Scholar] [CrossRef]
- Dolezal, R.; Soukup, O.; Malinak, D.; Savedra, R.; Marek, J.; Dolezalova, M.; Pasdiorova, M.; Salajkova, S.; Korabecny, J.; Honegr, J.; et al. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: Biological activities, molecular modeling and QSAR studies. Eur. J. Med. Chem. 2016, 121, 699–711. [Google Scholar] [CrossRef]
- Soukup, O.; Dolezal, R.; Malinak, D.; Marek, J.; Salajkova, S.; Pasdiorova, M.; Honegr, J.; Korabecny, J.; Nachtigal, P.; Nachon, F.; et al. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorganic Med. Chem. 2016, 24, 841–848. [Google Scholar] [CrossRef]
- Jiao, Y.; Niu, L.-N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef]
- Tezel, U.; Pavlostathis, S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015, 33, 296–304. [Google Scholar] [CrossRef] [PubMed]
- McBain, A.J.; Ledder, R.G.; Moore, L.E.; Catrenich, C.E.; Gilbert, P. Effects of Quaternary-Ammonium-Based Formulations on Bacterial Community Dynamics and Antimicrobial Susceptibility. Appl. Environ. Microbiol. 2004, 70, 3449–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeaman, M.R.; Yount, N.; Hauger, R.L.; Grigoriadis, D.E.; Dallman, M.F.; Plotsky, P.M.; Vale, W.W.; Dautzenberg, F.M. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolezikova Mackova, I.; Macek, T.; Mackova, M. Antimikrobialni peptidy: Vztah mezi jejich strukturou a antibarcterialni aktivitou. Chem. Listy 2011, 105, 346–355. [Google Scholar]
- Kocourkova, L.; Novotná, P.; Cujova, S.; Cerovsky, V.; Urbanova, M.; Setnicka, V. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 170, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Benkova, M.; Soukup, O.; Prchal, L.; Sleha, R.; Elersek, T.; Novak, M.; Sepčić, K.; Gunde-Cimerman, N.; Dolezal, R.; Bostik, V.; et al. Synthesis, Antimicrobial Effect and Lipophilicity-Activity Dependence of Three Series of Dichained N -Alkylammonium Salts. ChemistrySelect 2019, 4, 12076–12084. [Google Scholar] [CrossRef]
- El Hage, S.; Lajoie, B.; Stigliani, J.-L.; Furiga-Chusseau, A.; Roques, C.; Baziard, G. Synthesis, antimicrobial activity and physico-chemical properties of some n-alkyldimethylbenzylammonium halides. J. Appl. Biomed. 2014, 12, 245–253. [Google Scholar] [CrossRef]
- Williams, H.D.; Sahbaz, Y.; Ford, L.; Nguyen, T.-H.; Scammells, P.J.; Porter, C.J. Ionic liquids provide unique opportunities for oral drug delivery: Structure optimization and in vivo evidence of utility. Chem. Commun. 2014, 50, 1688. [Google Scholar] [CrossRef]
- Samanta, S.K.; Bhattacharya, S. Aggregation induced emission switching and electrical properties of chain length dependent π-gels derived from phenylenedivinylene bis-pyridinium salts in alcohol–water mixtures. J. Mater. Chem. 2012, 22, 25277. [Google Scholar] [CrossRef]
- Fayyaz, S.; Talat, R.; Ali, S.; Khalid, N.; Shah, A.; Ullah, F. Synthesis, Characterization, and Micellization Behavior of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromides and Their Drug Interaction Study by UV–Visible Spectroscopy and Conductometry. J. Surfactants Deterg. 2019, 22, 625–632. [Google Scholar] [CrossRef]
- Fayyaz, S.; Ali, S.; Khalid, N.; Shah, A.; Ullah, F. One Pot Synthesis and Properties of Cationic Surfactants: N-Alkyl-3-Methylpyridinium Bromide. J. Surfactants Deterg. 2016, 19, 841–848. [Google Scholar] [CrossRef]
- Mishra, A.; Patel, S.; Behera, R.K.; Mishra, B.K.; Behera, G.B. Dye-Surfactant Interaction: Role of an Alkyl Chain in the Localization of Styrylpyridinium Dyes in a Hydrophobic Force Field of a Cationic Surfactant (CTAB). Bull. Chem. Soc. Jpn. 1997, 70, 2913–2918. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Samanta, S.K. Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based pi hydrogelator. Chemistry 2012, 18, 16632–16641. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.; Samanta, S.K.; Bhattacharya, S. Heparin triggered dose dependent multi-color emission switching in water: A convenient protocol for heparinase I estimation in real-life biological fluids. Chem. Commun. 2017, 53, 1486–1489. [Google Scholar] [CrossRef]
- A Bell, N.; Bradley, C.S.; Broughton, R.A.; Coles, S.J.; Hibbs, D.E.; Hursthouse, M.B.; Ray, A.K.; Simmonds, D.J.; Thorpe, S.C. Comparison of the structure property relationships in LB films of zwitterionic TCNQ adducts. J. Mater. Chem. 2005, 15, 1437–1445. [Google Scholar] [CrossRef]
- Mayorga, B.J.L.; Sandoval-Chavez, C.I.; Carreon-Castro, P.; Ugalde-Saldivar, V.M.; Cortez-Guzman, F.; Lopez-Cortes, J.G.; Ortega-Alfaro, M.C.; Sandoval-Chavez, C.I.; Carreon-Castro, M.D.P. Ferrocene amphiphilic D–π–A dyes: Synthesis, redox behavior and determination of band gaps. New J. Chem. 2018, 42, 6101–6113. [Google Scholar] [CrossRef]
- Würthner, F.; Yao, S.; Debaerdemaeker, T.; Wortmann, R. Dimerization of Merocyanine Dyes. Structural and Energetic Characterization of Dipolar Dye Aggregates and Implications for Nonlinear Optical Materials. J. Am. Chem. Soc. 2002, 124, 9431–9447. [Google Scholar] [CrossRef]
- Weir, C.A.; Hadizad, T.; Beaudin, A.M.; Wang, Z.Y. Effecient synthesis and decomposition study of optically nonlinear adducts of tetracyanoquinodimethane. Tetrahedron Lett. 2003, 44, 4697–4700. [Google Scholar] [CrossRef]
- Adderson, J.E.; Taylor, H. The effects of temperature on the critical micelle concentrations of alkyl α-picolinium bromides. J. Pharm. Pharmacol. 1970, 22, 523–530. [Google Scholar] [CrossRef]
- Fu, D.; Gao, X.; Huang, B.; Wang, J.; Sun, Y.; Zhang, W.; Kan, K.; Zhang, X.; Xie, Y.; Sui, X. Micellization, surface activities and thermodynamics study of pyridinium-based ionic liquid surfactants in aqueous solution. RSC Adv. 2019, 9, 28799–28807. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Sahoo, M.; Soreng, P.; Mishra, B.K. Synthesis, Characterization, Solution Behavior, and Density Functional Theory Analysis of Some Pyridinium-Based Ionic Liquids. J. Surfactants Deterg. 2018, 21, 367–373. [Google Scholar] [CrossRef]
- Viscardi, G.; Quagliotto, P.; Barolo, C.; Savarino, P.; Barni, E.; Fisicaro, E. Synthesis and surface and antimicrobial properties of novel cationic surfactants. J. Org. Chem. 2000, 65, 8197–8203. [Google Scholar] [CrossRef] [PubMed]
- Akhter, K.; Ullah, K.; Talat, R.; Haider, A.; Khalid, N.; Ullah, F.; Ali, S. Synthesis and characterization of cationic surfactants and their interactions with drug and metal complexes. Heliyon 2019, 5, e01885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shashkov, M.V.; Sidelnikov, V.N.; Zaikin, P. Selectivity of stationary phases based on pyridinium ionic liquids for capillary gas chromatography. Russ. J. Phys. Chem. A 2014, 88, 717–721. [Google Scholar] [CrossRef]
- Crooks, P.; Ravard, A.; Wilkins, L.H.; Teng, L.-H.; Buxton, S.T.; Dwoskin, L.P. Inhibition of nicotine-evoked [3H] dopamine release by pyridino N-substituted nicotine analogues: A new class of nicotinic antagonist. Drug Dev. Res. 1995, 36, 91–102. [Google Scholar] [CrossRef]
- Dwoskin, L.P.; Sumithran, S.P.; Zhu, J.; Deaciuc, A.; Ayers, J.T.; A Crooks, P. Subtype-selective nicotinic receptor antagonists: Potential as tobacco use cessation agents. Bioorganic Med. Chem. Lett. 2004, 14, 1863–1867. [Google Scholar] [CrossRef]
- Zheng, F.; Bayram, E.; Sumithran, S.P.; Ayers, J.T.; Zhan, C.-G.; Schmitt, J.D.; Dwoskin, L.P.; Crooks, P. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release. Bioorganic Med. Chem. 2006, 14, 3017–3037. [Google Scholar] [CrossRef]
- Zheng, G.; Sumithran, S.P.; Deaciuc, A.G.; Dwoskin, L.P.; Crooks, P. Tris-azaaromatic quaternary ammonium salts: Novel templates as antagonists at nicotinic receptors mediating nicotine-evoked dopamine release. Bioorganic Med. Chem. Lett. 2007, 17, 6701–6706. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; McConnell, M.; Zhan, C.-G.; Dwoskin, L.P.; Crooks, P. QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(-)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum. Bioorganic Med. Chem. 2009, 17, 4477–4485. [Google Scholar] [CrossRef] [Green Version]
- Madaan, P.; Tyagi, V.K. Quaternary pyridinium salts: A review. J. Oleo Sci. 2008, 57, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Mivehi, L.; Bordes, R.; Holmberg, K. Adsorption of cationic gemini surfactants at solid surfaces studied by QCM-D and SPR—Effect of the presence of hydroxyl groups in the spacer. Colloids Surf. A Physicochem. Eng. Asp. 2013, 419, 21–27. [Google Scholar] [CrossRef]
- Łuczak, J.; Jungnickel, C.; Łącka, I.; Stolte, S.; Hupka, J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 2010, 12, 593. [Google Scholar] [CrossRef]
- Pernak, J.; Skrzypczak, A.; Bogacki, M. Quantitative Relation between Surface Active Properties and Antibiotic Activity of 1-Alkyl-3-alkylthiomethylimidazolium Chlorides. Chem. Pharm. Bull. 1995, 43, 2019–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Wang, F.; Chen, H.; Li, M.; Qiao, F.; Liu, Z.; Hou, Y.; Wu, C.; Fan, Y.; Liu, L.; et al. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Appl. Mater. Interfaces 2016, 8, 4242–4249. [Google Scholar] [CrossRef] [PubMed]
- Laatiris, A.; El Achouri, M.; Infante, M.R.; Bensouda, Y. Antibacterial activity, structure and CMC relationships of alkanediyl α,ω-bis(dimethylammonium bromide) surfactants. Microbiol. Res. 2008, 163, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, A.; Ikeda, T.; Endo, T. A novel approach to mode of action of cationic biocides morphological effect on antibacterial activity. J. Appl. Bacteriol. 1995, 78, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, S.M. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. J. Ind. Eng. Chem. 2015, 28, 171–183. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Zovko, A.; Gabric, M.V.; Sepcic, K.; Pohleven, F.; Jaklic, D.; Cimerman, N.G.; Lu, Z.; Edrada-Ebel, R.; Houssen, W.E.; Mancini, I.; et al. Antifungal and antibacterial activity of 3-alkylpyridinium polymeric analogs of marine toxins. Int. Biodeterior. Biodegrad. 2012, 68, 71–77. [Google Scholar] [CrossRef]
- Spearman, C. The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- EN 14476 Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area—Test Method and Requirements (Phase 2, Step 1); British Standards Institution: London, UK.
Sample Availability: Samples of all compounds (4a–6c, 4B–6B) are available upon request from the authors. |
Structure | Cpd a | Chain Length | Yield [%] | m.p.b [°C] | kc | log k | Clog p d | CMC e [μmol/L] |
---|---|---|---|---|---|---|---|---|
n = 5, 6, 7 | 4a | C12H25 | 50 | 121.9–123.9 | 0.05 ± 0.01 | −1.28 | 2.21 | 14,010 |
5a | C14H29 | 95 | 125.7–127.4 | 0.35 ± 0.01 | −0.45 | 3.10 | 2330 | |
6a | C16H33 | 98 | 126.8–128.8 | 1.09 ± 0.01 | 0.04 | 3.98 | 600 | |
n = 5, 6, 7 | 4b | C12H25 | 80 | 34.0–36.0 | 0.07 ± 0.01 | −1.14 | 2.21 | 9490 |
5b | C14H29 | 95 | 72.3–74.3 | 0.37 ± 0.01 | −0.43 | 3.10 | 2320 | |
6b | C16H33 | 96 | 70.8–72.6 | 1.18 ± 0.01 | 0.07 | 3.98 | 860 | |
n = 5, 6, 7 | 4c | C12H25 | 88 | 41.4–42.8 | 0.08 ± 0.01 | −1.12 | 1.36 | 14,160 |
5c | C14H29 | 4 | 60.4–62.3 | 0.36 ± 0.02 | −0.44 | 2.25 | 3460 | |
6c | C16H33 | 80 | 79.9–81.9 | 1.10 ± 0.01 | 0.04 | 3.14 | 650 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salajkova, S.; Benkova, M.; Marek, J.; Sleha, R.; Prchal, L.; Malinak, D.; Dolezal, R.; Sepčić, K.; Gunde-Cimerman, N.; Kuca, K.; et al. Wide-Antimicrobial Spectrum of Picolinium Salts. Molecules 2020, 25, 2254. https://doi.org/10.3390/molecules25092254
Salajkova S, Benkova M, Marek J, Sleha R, Prchal L, Malinak D, Dolezal R, Sepčić K, Gunde-Cimerman N, Kuca K, et al. Wide-Antimicrobial Spectrum of Picolinium Salts. Molecules. 2020; 25(9):2254. https://doi.org/10.3390/molecules25092254
Chicago/Turabian StyleSalajkova, Sarka, Marketa Benkova, Jan Marek, Radek Sleha, Lukas Prchal, David Malinak, Rafael Dolezal, Kristina Sepčić, Nina Gunde-Cimerman, Kamil Kuca, and et al. 2020. "Wide-Antimicrobial Spectrum of Picolinium Salts" Molecules 25, no. 9: 2254. https://doi.org/10.3390/molecules25092254
APA StyleSalajkova, S., Benkova, M., Marek, J., Sleha, R., Prchal, L., Malinak, D., Dolezal, R., Sepčić, K., Gunde-Cimerman, N., Kuca, K., & Soukup, O. (2020). Wide-Antimicrobial Spectrum of Picolinium Salts. Molecules, 25(9), 2254. https://doi.org/10.3390/molecules25092254