Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development
Abstract
:1. Introduction
2. Results and Discussion
2.1. Content of Phenolic Compounds in Herb Collected at Subsequent Developmental Stages of Plants
2.2. Effects of Age of Plants on the Accumulation of Phenolic Compounds
2.3. Chemical Characteristics of Plant Organs
3. Materials and Methods
3.1. Field Experiment
3.2. Plant Material
3.2.1. Content of Phenolic Compounds in Herb Collected at Subsequent Developmental Stages of Plants
3.2.2. Effects of Age of Plants on the Accumulation of Phenolic Compounds
3.2.3. Chemical Characteristics of Plant Organs
3.3. Chemical Analysis
3.3.1. Chemicals
3.3.2. HPLC-DAD
3.3.3. Isolation of Essential Oils and GC-MS and GC-FID Analysis
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Velasco-Negueruela, A.; Sanz, J.; Perez-Alonso, M.J.; Pala-Paul, J. The volatile components of the aerial parts of Melittis melissophyllum L. subsp. melissophyllum gathered in Spain. Bot. Complut. 2004, 28, 133–136. [Google Scholar] [CrossRef]
- Guarrera, P.M. Traditional phytotherapy in central Italy (Marche, Abruzzo and Latium). Fitoterapia 2005, 76, 1–25. [Google Scholar] [CrossRef]
- Jaric, S.; Popovic, Z.; Macukanovic-Joric, M.; Djurdjevic, I.; Mijatovic, M.; Karadzic, B.; Mitrovic, M.; Pavlovic, P. An ethnobotanical study on the usage of wild medicinal herbs Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 2007, 111, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Idolo, M.; Motti, R.; Mazzoleni, S. Ethnobotanical and phytomedical knowledge in a long history protected area: Abruzzo, Lazio, and Molise National Park (Italian Apennines). J. Ethnopharmacol. 2010, 127, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj, P. Wild food plants used in Poland from mid-19th century to the present. Etnobiologia Polska 2011, 1, 57–125. [Google Scholar]
- Maggi, F.; Papa, F.; Cristalli, G.; Conti, F.; Sagratini, G.; Vittori, S.; Giuliani, C. Histochemical localization of secretion and composition of the essential oil in Melittis melissophyllum L. subsp. melissophyllum from central Italy. Flavour Fragr. J. 2009, 25, 63–70. [Google Scholar] [CrossRef]
- Baldini, R.; Maccioni, S.; Bedini, G.; Flamini, G.; Cioni, P.L. Essential oils composition of Melittis melissophyllum L. and Oenanthe pimpinelloides L. (Liguria, Italy). Atti. Soc. Toscana Sci. Nat. Mem. Ser. B. 2009, 116, 61–66. [Google Scholar]
- Maggi, F.; Conti, F.; Cristalli, G.; Giuliani, C.; Papa, F.; Sagratini, G.; Vittori, S. Chemical differences in volatiles between Melittis melissophyllum L. subsp. melissophyllum and subsp. albida (Guss) P.W. Ball (Lamiaceae) determined by solid-phase microextraction (SPME) coupled with GC/FID and GC/MS. Chem. Biodivers. 2011, 8, 325–343. [Google Scholar] [CrossRef]
- Maggi, F.; Papa, F.; Vittori, S. Gas chromatography for the characterization of the mushroom-like flavor in Melittis melissophyllum L. (Lamiaceae). J. Essent. Oil Res. 2012, 24, 321–337. [Google Scholar] [CrossRef]
- Maggi, F.; Barboni, L.; Caprioli, G.; Papa, F.; Ricciutelli, M.; Sagratini, G.; Vittori, S. HPLC quantification of coumarin in bastard balm (Melittis melissophyllum L., Lamiaceae). Fitoterapia 2011, 82, 1215–1221. [Google Scholar] [CrossRef]
- Skrzypczak-Pietraszek, E.; Pietraszek, J. Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae). J. Pharm. Biomed. Anal. 2012, 66, 154–161. [Google Scholar] [CrossRef]
- Pereira, E.; Antonio, A.; Barreira, J.C.M.; Santos-Buelga, S.; Barros, L.; Ferreira, I.C.F.R. How gamma and electron-beam irradiation modulate phenolic profile expression in Melissa officinalis L. and Melittis melisophyllum L. Food Chem. 2018, 240, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypczak-Pietraszek, E.; Pietraszek, J. Seasonal changes of flavonoid content in Melittis melissophyllum L. (Lamiaceae). Chem. Biodivers. 2014, 11, 562–570. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile compounds and essential oils. Flavour Frag. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Liang, W.H.; Chang, T.W.; Chang, Y.C. Influence of harvest stage on the pharmacological effect of Angelica dahurica. Bot. Stud. 2018, 59, 14. [Google Scholar] [CrossRef]
- Di Ferdinando, M.; Brunetti, C.; Fini, A.; Tattini, M. Flavonoids as antioxidants in plants under abiotic stresses. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer Science + Business Media: New York, NY, USA, 2012. [Google Scholar]
- Ferreyra, M.L.F.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [Green Version]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Bertolucci, S.K.V.; Pereira, A.B.D.; Pinto, J.E.B.P.; Oliveira, A.B.; Braga, F.C. Seasonal variation on the contents of coumarin and kaurane-type diterpenes in Mikania laevigata and M. glomerata leaves under different shade levels. Chem. Biodivers. 2013, 10, 288–295. [Google Scholar] [CrossRef]
- Szymborska-Sandu, I.; Przybył, J.L.; Pioro-Jabrucka, E.; Jędrzejuk, A.; Węglarz, Z.; Baczek, K. Effect of shading on development, yield and quality of bastard balm (Melittis melissophyllum L.). Molecules 2020, 25, 2142. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Węglarz, Z. Accumulation of phenolic compounds in the Purple betony herb (Stachys officinalis L.) originating from cultivation. Herba Pol. 2016, 62, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Aerts, R.J.; Baumann, T.W. Distribution and utilization of chlorogenic acid in developing Coffea seedlings. J. Exp. Bot. 1994, 45, 497–503. [Google Scholar] [CrossRef]
- Marsie, W.; Singh, M. Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cell of velvet-leaf. J. Chem. Ecol. 1993, 19, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Goleniowski, M.; Bonfill, M.; Cusido, R.; Palazon, J. Phenolic acids. In Natural Products; Ramawat, K.G., Merillon, J.M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Macoy, D.M.; Kim, W.Y.; Lee, S.Y.; Kim, M.G. Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotechnol. Rep. 2015, 9, 269–278. [Google Scholar] [CrossRef]
- Bączek, K. Diversity of southern sweet-grass in its natural habitat and in cultivation. Herba Pol. 2017, 63, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Stallknecht, G.F.; Fornsworth, S. General characteristics of coumarin induced tuberization of axillary shoots of Solanum tuberosum cultivated in vitro. Am. Potato J. 1982, 59, 17–32. [Google Scholar] [CrossRef]
- Bauer, C.S.; Muday, G.K.; Djordjevic, M.A. Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol. 2007, 145, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Haichar, F.Z.; Santaella, C.; Huelin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Schmidt-Rohr, K.; Mao, J.D.; Olk, D.C. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. PNAS USA 2004, 101, 6351–6354. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.J.; Morris, P.; Hooker, J.E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 2006, 8, 1867–1880. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Ndakidemi, P.A.; Dakota, F.D. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct. Plant Biol. 2003, 30, 729–745. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.H.; Inoue, M.; Nishimura, H.; Mizutani, J.; Tsuzuki, E. Interaction of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol. 1993, 19, 1775–1787. [Google Scholar] [CrossRef]
- Batish, D.R.; Kaur, S.; Singh, H.P.; Kohli, R.K. Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Ozyra sativa). Flora 2008, 204, 388–395. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Kessler, A.; Bauerle, T.L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 2018, 218, 530–541. [Google Scholar] [CrossRef] [Green Version]
- European Pharmacopoeia, 9th ed.; European Directorate for the Quality of Medicines and Health Care (EDQM), Council of Europe: Strasbourg, France, 2011.
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Kuźma, P.; Ejdys, M.; Obiedziński, M.; Węglarz, Z. Intraspecific variability of yarrow (Achillea millefolium L. s.l.) in respect of developmental and chemical traits. Herba Pol. 2015, 61, 37–52. [Google Scholar] [CrossRef]
Sample Availability: Samples of the M. melissophyllum raw materials are available from the authors. |
Compounds | Developmental Stages | |||||
---|---|---|---|---|---|---|
Beginning of Flowering | Full Flowering | Seed-Setting | ||||
Flavonoids: | ||||||
Verbascoside | 265.50 | ±14.66 c | 338.82 | ±26.45 b | 599.86 | ±27.00 a |
Apiin | 46.77 | ±6.67 c | 97.92 | ±12.37 b | 156.22 | ±6.03 a |
Luteolin-7-O-glucoside | 555.61 | ±35.35 c | 1107.65 | ±47.64 a | 773.32 | ±32.30 b |
Coumarins and Phenolic Acids: | ||||||
Coumarin | 201.12 | ±13.37 a | 220.27 | ±10.35 a | 145.58 | ±12.70 b |
3,4-Dihydroxycoumarin | 40.28 | ±3.38 a | 76.06 | ±5.61 b | 45.11 | ±3.55 a |
o-Coumaric acid | 33.48 | ±6.64 a | 29.76 | ±8.15 a | 9.88 | ±1.27 b |
o-Coumaric acid 2-O-glucoside | 370.09 | ±43.52 a | 297.51 | ±56.00 a | 122.09 | ±30.93 b |
p-Coumaric acid | 3.69 | ±0.77 a | 2.87 | ±0.44 a | 0.79 | ±0.21 b |
Chlorogenic acid | 151.19 | ±22.15 c | 412.46 | ±19.85 b | 545.00 | ±23.00 a |
Caffeic acid | 4.47 | ±0.23 c | 6.82 | ±0.65 a | 5.50 | ±0.79 b |
Ferulic acid | 7.87 | ±1.30 a | 7.26 | ±0.63 a | 9.92 | ±1.28 a |
Cichoric acid | 63.57 | ±7.54 b | 89.81 | ±15.29 a | 52.46 | ±12.22 c |
Compounds | Age of Plants | |||||||
---|---|---|---|---|---|---|---|---|
1-Year-Old | 2-Year-Old | 3-Year-Old | 4-Year-Old | |||||
Flavonoids: | ||||||||
Verbascoside | 442.24 | ±35.31 b | 576.68 | ±29.64 a | 438.65 | ±17.42 b | 472.30 | ±31.03 b |
Apiin | 164.13 | ±9.50 b | 243.19 | ±5.46 a | 88.55 | ±6.10 d | 117.52 | ±6.13 c |
Luteolin-7-O-glucoside | 1774.79 | ±22.35 b | 2601.95 | ±36.07 a | 1456.12 | ±39.11 d | 1557.98 | ±32.03 c |
Coumarins and phenolic acids: | ||||||||
Coumarin | 164.62 | ±10.34 c | 204.99 | ±8.36 b | 219.16 | ±11.20 b | 272.06 | ±12.44 a |
3,4-Dihydroxycoumarin | 70.00 | ±2.98 c | 175.07 | ±2.75 a | 99.94 | ±3.71 b | 62.65 | ±3.05 c |
o-Coumaric acid | 66.02 | ±4.45 a | 33.04 | ±3.71 b | 34.70 | ±3.60 b | 30.60 | ±4.35 b |
o-Coumaric acid 2-O-glucoside | 326.32 | ±44.89 d | 521.03 | ±37.61 a | 459.44 | ±30.50 b | 400.10 | ±31.90 c |
p-Coumaric acid | 3.39 | ±0.42 b | 3.27 | ±0.31 b | 2.95 | ±0.69 b | 5.71 | ±0.26 a |
Chlorogenic acid | 446.46 | ±20.00 b | 686.58 | ±23.00 a | 419.93 | ±25.36 b | 223.43 | ±22.92 c |
Caffeic acid | 6.49 | ±0.50 b | 12.22 | ±0.34 a | 5.28 | ±0.52 b | 6.11 | ±0.48 b |
Ferulic acid | 4.50 | ±0.69 b | 11.11 | ±1.24 a | 5.64 | ±1.48 b | 3.28 | ±1.24 b |
Cichoric acid | 90.91 | ±8.32 b | 136.65 | ±10.15 a | 89.24 | ±7.11 b | 85.90 | ±11.42 b |
Compounds | Plant Organs | |||||||
---|---|---|---|---|---|---|---|---|
Flowers | Leaves | Shoots | Roots | |||||
Flavonoids: | ||||||||
Verbascoside | 576.96 | ±27.78 a | 396.55 | ±34.41 b | 88.84 | ±7.40 d | 279.53 | ±8.56 c |
Apiin | 45.86 | ±0.68 b | 134.30 | ±9.60 a | n.d. | n.d. | ||
Luteolin-7-O-glucoside | 1480.78 | ±106.15 a | 1441.36 | ±66.38 a | 20.37 | ±3.05 b | n.d. | |
Coumarins and phenolic acids: | ||||||||
Coumarin | 6.39 | ±0.29 d | 164.04 | ±3.44 a | 63.85 | ±5.15 b | 24.83 | ±0.33 c |
3,4-Dihydroxycoumarin | 19.94 | ±0.30 b | 64.48 | ±0.96 a | 5.60 | ±0.23 c | n.d. | |
o-Coumaric acid | 1.33 | ±0.08 d | 25.88 | ±0.18 a | 5.25 | ±0.36 c | 6.49 | ±0.10 b |
o-Coumaric acid 2-O-glucoside | n.d. | 420.20 | ±6.60 a | 34.50 | ±0.06 c | n.d. | ||
p-Coumaric acid | 5.37 | ±0.34 a | 3.01 | ±0.26 b | 1.52 | ±0.32 c | n.d. | |
Chlorogenic acid | 105.84 | ±4.29 d | 358.41 | ±25.73 a | 152.41 | ±10.88 c | 241.84 | ±13.73 b |
Caffeic acid | 14.02 | ±1.38 a | 7.16 | ±0.09 b | 4.28 | ±0.21 c | n.d. | |
Ferulic acid | 15.86 | ±0.65 b | 7.68 | ±0.39 c | 3.57 | ±0.42 d | 50.89 | ±4.28 a |
Cichoric acid | 27.53 | ±0.74 b | 92.97 | ±8.65 a | 14.64 | ±0.32 c | 89.91 | ±3.36 a |
No. | Chemical Compound | RI a | Leaves | Flowers |
---|---|---|---|---|
1 | α-Pinene | 1027 | 1.38 | 66.58 |
2 | Camphene | 1074 | 0.00 | 0.67 |
3 | Hexanal | 1082 | 0.27 | 0.00 |
4 | β-Pinene | 1115 | 0.10 | 6.80 |
5 | 2-Hexenal, (E)- | 1139 | 1.56 | 0.00 |
6 | Heptanal | 1186 | 0.00 | 1.08 |
7 | Cosmene | 1204 | 0.00 | 0.27 |
8 | Furan, 2-pentyl- | 1234 | 0.39 | 0.00 |
9 | m-Cymene | 1275 | 0.05 | 0.37 |
10 | 2,3-Octanedione | 1320 | 0.37 | 0.00 |
11 | cis-Rose oxide | 1353 | 0.00 | 2.03 |
12 | Nonanal | 1392 | 0.13 | 0.00 |
13 | 1-Octen-3-ol | 1443 | 29.19 | 1.04 |
14 | α-Campholenal | 1496 | 0.00 | 1.74 |
15 | Linalol | 1541 | 0.99 | 0.00 |
16 | β-caryophyllene | 1593 | 0.87 | 0.00 |
17 | Terpinen-4-ol | 1599 | 0.00 | 0.24 |
18 | β-terpinyl acetate | 1624 | 0.47 | 1.22 |
19 | Myrtenal | 1632 | 0.00 | 0.73 |
20 | Verbenol | 1659 | 0.00 | 0.66 |
21 | α-Terpineol | 1698 | 0.00 | 0.67 |
22 | Heptadecane | 1701 | 0.00 | 0.74 |
23 | 2-Methyl coumarone | 1725 | 1.54 | 0.00 |
24 | Citronellol | 1763 | 0.00 | 0.74 |
25 | Myrtenol | 1790 | 0.00 | 1.10 |
26 | Caryophyllene oxide | 1795 | 3.78 | 0.32 |
27 | 6,8-Nonadien-2-one | 1823 | 2.37 | 0.00 |
28 | trans-Carveol | 1837 | 0.00 | 0.66 |
29 | Geraniol | 1839 | 1.37 | 0.65 |
30 | Dehydrodihydroionone | 1896 | 0.49 | 0.00 |
31 | β-Ionone | 1937 | 3.65 | 0.00 |
32 | Globulol | 2033 | 0.72 | 0.00 |
33 | Ledol | 2047 | 7.31 | 0.00 |
34 | (-)-Spathulenol | 2126 | 2.79 | 0.00 |
35 | Phyton | 2164 | 0.00 | 1.74 |
36 | Aromadendrene oxide-(2) | 2232 | 1.42 | 0.00 |
37 | Farnesyl acetate | 2259 | 1.53 | 0.00 |
38 | Coumarin | 2475 | 1.17 | 0.00 |
39 | Phytol | 2614 | 8.78 | 0.00 |
40 | Tetradecanoic acid | 2686 | 1.95 | 0.00 |
41 | Heptacosane | 2700 | 0.00 | 0.93 |
42 | n-Hexadecanoic acid | 2912 | 20.99 | 0.00 |
Total identified | 95.63 | 90.98 | ||
Aliphatics | 56.83 | 3.79 | ||
Terpenoids | 31.56 | 87.19 | ||
Monoterpene hydrocarbons | 1.53 | 74.69 | ||
Oxygenated monoterpens | 2.83 | 10.44 | ||
Sesquiterpenes hydrocarbons | 0.87 | 0.00 | ||
Oxygenated sesquiterpenes | 17.55 | 0.32 | ||
Diterpenes | 8.78 | 1.74 | ||
Aromatics | 2.71 | 0.00 | ||
Others | 4.53 | 0.00 | ||
Content of essential oil (g 100 g−1 DW) | 0.09 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymborska-Sandhu, I.; Przybył, J.L.; Kosakowska, O.; Bączek, K.; Węglarz, Z. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules 2020, 25, 2421. https://doi.org/10.3390/molecules25102421
Szymborska-Sandhu I, Przybył JL, Kosakowska O, Bączek K, Węglarz Z. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules. 2020; 25(10):2421. https://doi.org/10.3390/molecules25102421
Chicago/Turabian StyleSzymborska-Sandhu, Izabela, Jarosław L. Przybył, Olga Kosakowska, Katarzyna Bączek, and Zenon Węglarz. 2020. "Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development" Molecules 25, no. 10: 2421. https://doi.org/10.3390/molecules25102421
APA StyleSzymborska-Sandhu, I., Przybył, J. L., Kosakowska, O., Bączek, K., & Węglarz, Z. (2020). Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules, 25(10), 2421. https://doi.org/10.3390/molecules25102421