Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review
Abstract
:1. Introduction
2. Capillaries Packed with Monoliths
2.1. Octadecyl and Octyl Silica Monoliths
2.2. Phenylboronate Monoliths
2.3. Monolithic Molecularly Imprinted Polymers (MIPs)
2.4. Immunosorbent Monoliths
3. Capillaries Packed with Restricted Access Materials (RAMs)
4. Coatings Reinforced with Carbon Nanotubes (CNTs)
5. Coatings Reinforced with SiO2 NPs
6. Phases for Magnetic IT-SPME
7. Coatings Reinforced with Metal and Metal Oxide NPs
8. Discussion and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Campíns-Falcó, P.; Herráez-Hernández, R.; Serra-Mora, P. Liquid chromatography. Instrumentation. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Townshend, A., Poole, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 108–116. [Google Scholar] [CrossRef]
- Nazario, C.E.D.; Silva, M.R.; Franco, M.S.; Lanças, F.M. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview. J. Chromatogr. A 2015, 1421, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Carmona, K.; Burato, J.S.S.; Borsatto, J.V.B.; de Toffoli, A.N.; Lanças, F.M. Miniaturization of liquid chromatography coupled to mass spectrometry: 1. Current trends on miniaturized LC columns. Trends Anal. Chem. 2020, 122, 115735. [Google Scholar] [CrossRef]
- Arthur, C.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- León-González, M.E.; Rosales-Conrado, N.; Pérez-Arribas, L.V.; Polo-Díez, L.M. Large injection volumes in capillary liquid chromatography: Study of the effect of focusing on chromatographic performance. J. Chromatogr. A 2010, 1217, 7507–7513. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Herráez-Hernández, R.; Campíns-Falcó, P. On-fibre solid-phase microextraction coupled to conventional liquid chromatography versus in-tube solid-phase microextraction coupled to capillary liquid chromatography for the screening analysis of triazines in water samples. J. Chromatogr. A 2006, 1125, 159–171. [Google Scholar] [CrossRef]
- Moliner-Martinez, Y.; Herráez-Hernández, R.; Verdú-Andrés, J.; Molins-Legua, C.; Campíns-Falcó, P. Recent advances of in-tube solid-phase microextraction. Trends Anal. Chem. 2015, 71, 205–213. [Google Scholar] [CrossRef]
- Fernández-Amado, M.; Prieto-Blanco, M.C.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Strengths and weaknesses of in-tube solid-phase microextraction: A scoping review. Anal. Chim. Acta 2016, 906, 41–57. [Google Scholar] [CrossRef]
- Serra-Mora, P.; Moliner-Martínez, Y.; Molins-Legua, C.; Herráez-Hernández, R.; Verdú-Andrés, J.; Campíns-Falcó, P. Trends in online intube solid phase microextraction. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 76, pp. 427–461. [Google Scholar] [CrossRef]
- Costa Queiroz, M.A.; de Souza, I.D.; Marchioni, C. Current advances and applications of in-tube solid-phase microextraction. Trends Anal. Chem. 2019, 111, 261–278. [Google Scholar] [CrossRef]
- Moliner-Martinez, Y.; Ballester-Caudet, A.; Verdú-Andrés, J.; Herráez-Hernández, R.; Molins-Legua, C.; Campíns-Falcó, P. In-tube solid-phase microextraction. In Handbooks in Separation Science, Solid-Phase Extraction Colin; Poole, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 14, pp. 387–427. [Google Scholar] [CrossRef]
- Gou, Y.; Pawliszyn, J. In-tube solid-phase microextraction coupled to capillary LC for carbamate analysis in water samples. Anal. Chem. 2000, 72, 2774–2779. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Herráez-Hernández, R.; Campíns-Falcó, P. In-tube solid-phase microextraction-capillary liquid chromatography as a solution for the screening analysis of organophosphorus pesticides in untreated environmental water samples. J. Chromatogr. A 2007, 1141, 10–21. [Google Scholar] [CrossRef]
- Campíns-Falcó, P.; Verdú-Andrés, J.; Sevillano-Cabeza, A.; Herráez-Hernández, R.; Molins-Legua, C.; Moliner-Martinez, Y. In-tube solid-phase microextraction coupled by in valve mode to capillary LC-DAD: Improving detectability to multiresidue organic pollutants analysis in several whole waters. J. Chromatogr. A 2010, 1217, 2695–2702. [Google Scholar] [CrossRef] [PubMed]
- Moliner-Martinez, Y.; Herráez-Hernández, R.; Molins-Legua, C.; Campins-Falcó, P. Improving analysis of apolar organic compounds by the use of a capillary titania-based column: Application to the direct determination of faecal sterols cholesterol and coprostanol in wastewater samples. J. Chromatogr. A 2010, 1217, 4682–4687. [Google Scholar] [CrossRef] [PubMed]
- Moliner-Martínez, Y.; Molins-Legua, C.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Advantages of monolithic over particulate columns for multiresidue analysis of organic pollutants by in-tube solid-phase microextraction coupled to capillary liquid chromatography. J. Chromatogr. A 2011, 1218, 6256–6262. [Google Scholar] [CrossRef] [PubMed]
- Jornet-Martínez, N.; Muñoz-Ortuno, M.; Moliner-Martínez, Y.; Herráez-Hernández, R.; Campíns-Falcó, P. On-line in-tube solid phase microextraction-capillary liquid chromatography method for monitoring degradation products of di-(2-ethylhexyl) phthalate in waters. J. Chromatogr. A 2014, 1347, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Pla-Tolós, J.; Moliner-Martínez, Y.; Molins-Legua, C.; Herráez-Hernández, R.; Verdú-Andrés, J.; Campíns-Falcó, P. Selective and sensitive method based on capillary liquid chromatography with in-tube solid phase microextraction for determination of monochloramine in water. J. Chromatogr. A 2015, 1388, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Ortuño, M.; Moliner-Martínez, Y.; Cogollos-Costa, S.; Herráez-Hernández, R.; Campíns-Falcó, P. A miniaturized method for estimating di(2-ethylhexyl) phthalate in bivalves as bioindicators. J. Chromatogr. A 2012, 1260, 169–173. [Google Scholar] [CrossRef]
- Muñoz-Ortuño, M.; Argente-García, A.; Moliner-Martínez, Y.; Verdú-Andrés, J.; Herráez-Hernández, R.; Picher, M.T.; Campíns-Falcó, P. A cost-effective method for estimating di(2-ethylhexyl)phthalate in coastal sediments. J. Chromatogr. A 2014, 1324, 57–62. [Google Scholar] [CrossRef]
- Jornet-Martínez, N.; Antón-Soriano, C.; Campíns-Falcó, P. Estimation of the presence of unmetabolized dialkyl phthalates in untreated human urine by an on-line miniaturized reliable method. Sci. Total Environ. 2015, 532, 239–244. [Google Scholar] [CrossRef]
- González-Fuenzalida, R.A.; Sanjuan-Navarro, L.; Moliner-Martínez, Y.; Campíns-Falcó, P. Quantitative study of the capture of silver nanoparticles by several kinds of soils. Sci. Total Environ. 2018, 630, 1226–1244. [Google Scholar] [CrossRef]
- Vitta, Y.; Moliner-Martínez, Y.; Campíns-Falcó, P.; Fernández Cuervo, A. An in-tube SPME device for the selective determination of chlorophyll a in aquatic systems. Talanta 2010, 82, 952–956. [Google Scholar] [CrossRef]
- Prieto-Blanco, M.C.; López-Mahía, P.; Campíns-Falcó, P. On-line analysis of carbonyl compounds with derivatization in aqueous extracts of atmospheric particulate PM10 by in-tube solid-phase microextraction coupled to capillary liquid chromatography. J. Chromatogr. A 2011, 1218, 4834–4839. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Blanco, M.C.; Moliner-Martínez, Y.; López-Mahía, P.; Campíns-Falcó, P. Determination of carbonyl compounds in particulate matter PM2.5 by in-tube solid-phase microextraction coupled to capillary liquid chromatography/mass spectrometry. Talanta 2013, 115, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Hakobyan, L.; Pla Tolos, J.; Moliner-Martinez, Y.; Molins-Legua, C.; Ruiz Ramos, J.; Gordon, M.; Ramirez-Galleymore, P.; Campíns-Falcó, P. Determination of meropenem in endotracheal tubes by in-tube solid phase microextraction coupled to capillary liquid chromatography with diode array detection. J. Pharm Biomed. Anal. 2018, 151, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Rodríguez, H.D.; García-Robles, A.A.; Sáenz-González, P.; Verdú-Andrés, J.; Campíns-Falcó, P. On-line in-tube solid phase microextraction coupled to capillary liquid chromatography-diode array detection for the analysis of caffeine and its metabolites in small amounts of biological samples. J. Pharm. Biomed. Anal. 2020, 178, 112914. [Google Scholar] [CrossRef]
- Prieto-Blanco, M.C.; Argente-García, A.; Campíns-Falcó, P. A capillary liquid chromatography method for benzalkonium chloride determination as a component or contaminant in mixtures of biocides. J. Chromatogr. A 2016, 1431, 176–183. [Google Scholar] [CrossRef]
- Prieto-Blanco, M.C.; Moliner-Martínez, Y.; López-Mahía, P.; Campíns-Falcó, P. Ion-pair in-tube solid-phase microextraction and capillary liquid chromatography using a titania-based column: Application to the specific lauralkonium chloride determination in water. J. Chromatogr. A 2012, 1248, 55–59. [Google Scholar] [CrossRef]
- Argente-García, A.I.; Hakobyan, L.; Guillem, C.; Campíns-Falcó, P. Estimating diphenylamine in gunshot residues from a new tool for identifying both inorganic and organic residues in the same sample. Separations 2019, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Jornet-Martínez, N.; Ortega-Sierra, A.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Analysis of contact traces of cannabis by in-tube solid-phase microextraction coupled to nanoliquid chromatography. Molecules 2018, 23, 2359. [Google Scholar] [CrossRef] [Green Version]
- Shintani, Y.; Zhou, X.; Furuno, M.; Minakuchi, H.; Nakanishi, K. Monolithic silica column for in-tube solid-phase microextraction coupled to high-performance liquid chromatography. J. Chromatogr. A 2003, 895, 351–357. [Google Scholar] [CrossRef]
- Jia, L.; Tanaka, N.; Terabe, S. Capillary liquid chromatographic determination of cellular flavins. J. Chromatogr. A 2004, 1053, 71–78. [Google Scholar] [CrossRef]
- Xu, H.; Jia, L. Capillary liquid chromatographic analysis of fat-soluble vitamins and β-carotene in combination with in-tube solid-phase microextraction. J. Chromatogr. B 2009, 877, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.-M.; Lin, B.; Feng, Y.-Q. Hybrid organic–inorganic octyl monolithic column for in-tube solid-phase microextraction coupled to capillary high-performance liquid chromatography. J. Chromatogr. A 2007, 1164, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Z.; Pang, J.L.; Lin, Y.; Huang, H.; Cai, Z.W.; Zhang, L.; Chen, G.N. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst 2011, 136, 3281–3288. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Wei, S.-S.; Yuan, B.-F.; Feng, Y.-Q. Preparation of methacrylate-based monolith for capillary hydrophilic interaction chromatography and its application in determination of nucleosides in urine. J. Chromatogr. A 2012, 1228, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Espina-Benitez, M.B.; Randon, J.; Demesmay, C.; Dugas, V. Development of a new in-line coupling of a miniaturized boronate affinity monolithic column with reversed-phase silica monolithic capillary column for analysis of cis-diol-containing nucleoside compounds. J. Chromatogr. A 2019, 1597, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Szumski, M.; Grzywiskiński, D.; Prus, W.; Buszewski, B. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. J. Chromatogr. A 2014, 1374, 163–170. [Google Scholar] [CrossRef]
- Bouvarel, T.; Delaunay, N.; Pichon, V. Selective extraction of cocaine from biological samples with a miniaturized monolithic molecularly imprinted polymer and on-line analysis in nano-liquid chromatography. Anal. Chim. Acta 2020, 1096, 89–99. [Google Scholar] [CrossRef]
- Brothier, F.; Pichon, V. Immobilized antibody on a hybrid organic–inorganic monolith: Capillary immunoextraction coupled on-line to nanoLC-UV for the analysis of microcystin-LR. Anal. Chim. Acta 2013, 792, 52–58. [Google Scholar] [CrossRef]
- Brothier, F.; Pichon, V. Miniaturized DNA aptamer-based monolithic sorbent for selective extraction of a target analyte coupled on-line to nanoLC. Anal. Bioanal. Chem. 2014, 406, 7875–7886. [Google Scholar] [CrossRef]
- Levernæs, M.C.S.; Brandtzaeg, O.K.; Amundsen, S.F.; Reubsaet, L.; Lundanes, E.; Halvorsen, T.G.; Wilson, S.R. Selective fishing for peptides with antibody-immobilized acrylate monoliths, coupled online with nanoLC-MS. Anal. Chem. 2018, 90, 13860–13866. [Google Scholar] [CrossRef]
- Santos Neto, A.J.; Rodrigues, J.C.; Fernandes, C.; Titato, G.M.; Alves, C.; Lanças, F.M. Automated microcolumn-switching system for drug analysis by direct injection of human plasma. J. Chromatogr. A 2006, 1105, 71–76. [Google Scholar] [CrossRef]
- Santos-Neto, A.J.; Markides, K.E.; Sjöberg, P.J.R.; Bergquist, J.; Lanças, F.M. Capillary column switching restricted-access media-liquid chromatography-electrospray ionization-tandem mass spectrometry system for simultaneous and direct analysis of drugs in biofluids. Anal. Chem. 2007, 79, 6359–6367. [Google Scholar] [CrossRef]
- Jornet-Martínez, N.; Serra-Mora, P.; Moliner-Martínez, Y.; Herráez-Hernández, R.; Campíns-Falcó, P. Evaluation of carbon nanotubes functionalized polydimethylsiloxane based coatings for in-tube solid phase microextraction coupled to capillary liquid chromatography. Chromatography 2015, 2, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Moliner-Martínez, Y.; Serra-Mora, P.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Analysis of polar triazines and degradation products in waters by in-tube solid-phase microextraction and capillary chromatography: An environmentally friendly method. Anal. Bioanal. Chem. 2015, 407, 1485–1497. [Google Scholar] [CrossRef]
- Argente-García, A.I.; Moliner-Martínez, Y.; López-García, E.; Campíns-Falcó, P.; Herráez-Hernández, R. Application of carbon nanotubes modified coatings for the determination of amphetamines by in-tube solid-phase microextraction and capillary liquid chromatography. Chromatography 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- González-Fuenzalida, R.A.; López-García, E.; Moliner-Martínez, Y.; Campíns-Falcó, P. Adsorbent phases with nanomaterials for in-tube solid-phase microextraction coupled on-line to liquid nanochromatography. J. Chromatogr. A 2016, 1432, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Serra-Mora, P.; Jornet-Martinez, N.; Moliner-Martinez, Y.; Campíns-Falcó, P. In tube-solid phase microextraction-nano liquid chromatography: Application to the determination of intact and degraded polar triazines in waters and recovered struvite. J. Chromatogr. A. 2017, 1513, 51–58. [Google Scholar] [CrossRef]
- Serra-Mora, P.; Rodríguez-Palma, C.E.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Improving the on-line extraction of polar compounds by IT-SPME with silica nanoparticles modified phases. Separations 2018, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Moliner-Martínez, Y.; Prima-Garcia, H.; Ribera, A.; Coronado, E.; Campíns-Falcó, P. Magnetic in-tube solid phase microextraction. Anal. Chem. 2012, 84, 7233–7240. [Google Scholar] [CrossRef]
- Moliner-Martínez, Y.; Vitta, Y.; Prima-García, H.; González-Fuenzalida, R.A.; Campíns-Falcó, P.; Coronado, E. Silica supported Fe3O4 magnetic nanoparticles for magnetic sold-phase extraction and magnetic in-tube solid-phase microextraction: Application to organophosphorous compounds. Anal. Bioanal. Chem. 2014, 406, 2211–2215. [Google Scholar] [CrossRef]
- González-Fuenzalida, R.A.; Moliner-Martínez, Y.; Prima-Garcia, H.; Ribera, A.; Campíns-Falcó, P.; Zaragozá, R.J. Evaluation of superparamagnetic silica nanoparticles for extraction of triazines in magnetic in-tube solid phase microextraction coupled to capillary liquid chromatography. Nanomaterials 2014, 4, 242–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Mora, P.; García-Narbona, P.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Exploring new extractive phases for in-tube solid phase microextraction coupled to miniaturized liquid chromatography. Separations 2019, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Serra-Mora, P.; Herráez-Hernández, R.; Campíns-Falcó, P. Bimodal copper oxide nanoparticles doped phase for the extraction of highly polar compounds by in-tube solid-phase microextraction coupled on-line to nano-liquid chromatography. J. Chromatogr. A 2020, 1617, 460819. [Google Scholar] [CrossRef] [PubMed]
- Serra-Mora, P.; Herráez-Hernández, R.; Campíns-Falcó, P. Minimizing the impact of sample preparation on analytical results: In-tube solid-phase microextraction coupled on-line to nano-liquid chromatography for the monitoring of tribenuron methyl in environmental waters. Sci. Total Environ. 2020, 721, 137732. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, N.; Zhang, B.; Lei, X.; Wu, X. On-line coupling of hydrophilic ionic liquids-based polymer monolith microextraction to capillary liquid chromatography with amperometric detection: An ultrasensitive residue analysis method for glycopeptide antibiotics. J. Chromatogr. A 2018, 1156, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Gama, M.R.; Rocha, F.R.P.; Bottoli, C.B.G. Monoliths: Synthetic routes, functionalization and innovative analytical applications. Trends Anal. Chem. 2019, 115, 39–51. [Google Scholar] [CrossRef]
- Xu, L.; Qi, X.; Li, X.; Bai, Y.; Liu, H. Recent advances in applications of nanomaterials for sample preparation. Talanta 2016, 146, 714–726. [Google Scholar] [CrossRef]
- González-Fuenzalida, R.A.; Jornet-Martínez, N.; Herráez-Hernández, R.; Campíns-Falcó, P. Nanomaterials for sample preparation in LC-MS bioanalysis. In Sample Preparation in LC-MS Bioanlaysis; John Wiley & Sons: Hoboken, NJ, USA, 2019; Volume 10, ISBN 978-1-119-27429-2. [Google Scholar]
- Zhou, N.-Z.; Liu, P.; Su, X.-C.; Liao, Y.-H.; Lei, N.-S.; Liang, Y.-H.; Zhou, S.-H.; Lin, W.-S.; Chen, J.; Feng, Y.-Q.; et al. Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils. Anal. Chim. Acta 2017, 970, 38–46. [Google Scholar] [CrossRef]
Extractive Phase | Analytes | Sample Matrix | Column for Separation/Detection | Extraction Performance | Ref. |
---|---|---|---|---|---|
C18 monoliths | Pesticides | - | C18 (150 mm × 0.3 mm i.d., 3 µm)/UV–Vis | - | [32] |
Flavins | E. coli cell extracts | C18 monolithic (250 mm × 0.2 mm i.d.)/UV | Enhancement factors in peak heights relative to conventional injection of 110 | [33] | |
Fat-soluble vitamins and β-carotene | Corn extracts | C18 monolithic (270 mm × 0.1 mm i.d.)/UV | Enhancement factors in peak heights relative to conventional injection of 13–724 | [34] | |
C8 monolith | PAHs | - | C18 (250 mm × 0.1 100 mm i.d., 3 µm)/UV-Vis | Enhancement factors on analytical responses of 254–372 | [35] |
4-phenylboronate affinity monolith | Glycoproteins | Egg white sample | -/UV | - | [36] |
3-acrylamidophenyl boronate affinity monoliths | Nucleosides | Urine | Mehtacrylate based monolith (30 cm × 0.1 mm i.d.)/UV | - | [37] |
Nucleosides | - | RP-capillary column (7 cm-length)/UV (DAD) | Recoveries in urine, 86.5–106.8% | [38] | |
Methacrylate imprinted polymer | Aflatoxines B1, G1 B2 and G2 | Water | Silica-based cholesterol (300 mm × 0.18 mm i.d.)/Laser induced fluorescence | - | [39] |
Methacrylate imprinted monolith | Cocaine and benzoylecgonine | Plasma and saliva | C18 (150 x 0.075 mm i.d., 3 µm)/UV | Recoveries in plasma and saliva of 88.6–100.4% | [40] |
Monolith with antibodies specific for microcystin-LR | Microcystin-LR | Cyano -bacteria cultures | C18 (150 mm × 0.1 mm i.d.)/UV (DAD) | Recovery > 70% in pure water | [41] |
Monolithic with DNA aptamer | Ochratoxin A | Beer | C18 (150 mm × 0.1 mm i.d.)/Laser induced fluorescence | Recovery > 80% in standards | [42] |
Monolith with anti-protein antibodies | Peptides | Digested serum | C18 (150 mm × 0.075 mm i.d., 3 μm)/MS/MS | Recovery of 110% | [43] |
BSA modified C18 RAM | Fluoxetine | Plasma | C18 (100 mm × 0.52 mm i.d., 3 µm)/UV-vis | - | [44] |
Different C18 and BSA modified C18 RAMs | Antidepressant and antihelmintic drugs | Plasma and urine | Capillary columns of variable length and i.d., packed with C18 120 Å pore, 5 µm particles/MS/MS | - | [45] |
PDMS phase and PDMS doped with CNTs | Different pollutants and PAHs | Water | C18 (150 mm × 0.2 mm i.d., 0.5 μm)/UV(DAD) | CNTs increased the responses by factors up to 6.3 | [46] |
Triazines | Sea and transition waters | C18 (150 mm × 0.2 mm i.d., 0.5 μm)/UV(DAD) | CNTs increased the responses only for the least polar analytes | [47] | |
Amphetamines | Oral fluid | C18 (35 mm x 0.5 mm i.d., 3.5 µm)/Fluorescence | c-SWCNT increased the responses by factors of 2.9–3.3 | [48] | |
PDMS phases doped with CNTs and Fe3O4 NPs; SiO2/PEG doped with Fe3O4 NPs | Diclofenac | Tablets and river waters | C18 (150 mm × 0.5 mm i.d., 3.5 µm)/UV(DAD) | Best sensitivity achieved with a SiO2/PEG supported Fe3O4 NPs phase | [49] |
PDMS phases doped with CNTs and TEOS-MTEOS doped with SiO2 NPs | Polar triazines | Waters and recovered struvite | CapLC: monolithic C18 (150 × 0.2 mm i. d.) and C18 (150 mm × 0.5 mm i.d., 5 µm)/UV-Vis NanoLC: C18 (50 mm × 0.075 mm i.d., 3.5 µm)/UV(DAD) | Best analyte detectability achieved with the SiO2 NPs doped TEOS-MTEOS phase and nanoLC | [50] |
TEOS-MTEOS doped with SiO2 NPs | Herbicides | Sea and transition waters; soil extracts | C18 (150 mm × 0.5 mm i.d., 5 µm)/UV(DAD) | Enrichment factors compared to commercial PDMS phases up to 5.1 | [51] |
Fe3O4 NPs supported on silica for magnetic IT-SPME | Pharmaceutical compounds | Water | C18 (150 mm × 0.5 mm, i.d. 3.5 μm)/UV(DAD) | Recoveries of 70–100% | [52] |
Organophosphorous compounds | Waste water | C18 (35 mm × 0.5 mm, 5 µm)/UV (DAD) | Recoveries of 94−97% | [53] | |
Triazines | River water | C18 (150 mm × 0.5 mm, i.d., 3.5 μm)/UV(DAD) | Recoveries of 99–110% | [54] | |
TEOS-MTEOS doped with TiO2 NPs and SiO2 NPs | PAHs, saccharine phenylurea and organophosphorous herbicides | River and ditch water, and soil extracts | CapLC: C18 (150 × 0.5 mm i.d., 5 µm) /fluorescence NanoLC: C18 (50 mm × 0.075 mm i.d., 3.5 µm)/UV(DAD) | Best results for the most polar analyes obtained with the TiO2 NPs | [55] |
TEOS-MTEOS doped with different metal and metal oxide NPs | Highly polar triazines and amino acids | Sea and river water | C18(50 mm × 0.075 mm i.d., 3.5 μm) and HILIC (150 mm × 0.075 mm i.d., 5 μm)/UV(DAD) | Enhancement factors with respect the TEOS-MTEOS phase up to 30 | [56, 57] |
Monolith with the ionic liquid 1-butyl-3-vinylimidazoliumbromide | Glycopeptide antibiotics | Feed extracts | Cyano (200 × 0.05 mm i.d., 3 µm)/Amperometry | Recoveries of 80–120% | [58] |
Overall Objective | Target Compounds | Recommended Option |
---|---|---|
Enhancement of the efficiency | Compounds of low and/or medium polarity | Capillaries packed with organic silica monoliths (C18, C8) |
Polymeric phases reinforced with CNTs | ||
Sorbents for magnetic IT-SPME | ||
Extraction of compounds of very different polarities | Polymeric phases reinforced with a mixture of NPs | |
Extraction of highly polar compounds | Polymeric phases reinforced with specific NPs (CuO, TiO2) | |
Enhancement of the selectivity | Extraction of small compounds from biofluids | RAMs |
Compounds with cis-trans diol groups | Capillaries packed with phenylboronate monoliths | |
Specific compounds | Capillaries packed with MIPs | |
Specific compounds | Capillaries packed with immunosorbents |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Rodríguez, H.D.; Verdú-Andrés, J.; Herráez-Hernández, R.; Campíns-Falcó, P. Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules 2020, 25, 2460. https://doi.org/10.3390/molecules25102460
Ponce-Rodríguez HD, Verdú-Andrés J, Herráez-Hernández R, Campíns-Falcó P. Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules. 2020; 25(10):2460. https://doi.org/10.3390/molecules25102460
Chicago/Turabian StylePonce-Rodríguez, Henry Daniel, Jorge Verdú-Andrés, Rosa Herráez-Hernández, and Pilar Campíns-Falcó. 2020. "Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review" Molecules 25, no. 10: 2460. https://doi.org/10.3390/molecules25102460
APA StylePonce-Rodríguez, H. D., Verdú-Andrés, J., Herráez-Hernández, R., & Campíns-Falcó, P. (2020). Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules, 25(10), 2460. https://doi.org/10.3390/molecules25102460