Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Data
4.2. qHTS Data Analysis
4.3. DeepSnap
4.4. Preparation of Dataset
4.5. Deep Learning
4.6. Evaluation of the Predictive Model
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Acc (Test) | accuracy in the test dataset |
AhR | aryl hydrocarbon receptor |
AOP | adverse outcome pathway |
AR | androgen receptor |
AUC | area under the curve |
Acc (Val) | accuracy in the validation dataset |
BAC | balanced accuracy |
BSA | bisphenol A |
CAR | constitutive androstane receptor |
CNN | convolutional neural network |
DBD | DNA-binding domain |
DIGITS | deep learning GPU training system |
DL | deep learning |
DMSO | dimethyl sulfoxide |
ER | estrogen receptor |
ERR | estrogen-related receptor |
F | F-measure |
FN | false negative |
FP | false positive |
FXR | farnesoid X receptor |
GR | glucocorticoid receptor |
LBD | ligand-binding domain |
Loss (Val) | loss in the validation dataset |
LXR | liver X receptor |
MCC | Matthews correlation coefficient |
ML | machine learning |
MOE | molecular operating environment |
NR | nuclear receptor |
PPAR | peroxisome proliferator-activated receptor |
PR | progesterone receptor |
PXR | pregane X receptor |
qHTS | quantitative high-throughput screening |
QSAR | quantitative structure–activity relationship |
RAR | retinoic acid receptor |
RE | response element |
RXR | retinoid X receptor |
ROC | receiver operating characteristic |
SE | standard error |
SMILES | simplified molecular input line entry system |
SSRM | selective steroid receptor modulator |
TN | true negative |
Tox21 | Toxicology in the 21st Century |
TP | true positive |
TR | thyroid receptor |
TSHR | thyroid-stimulating hormone receptor |
VDR | vitamin D receptor |
References
- Hall, J.M.; Greco, C.W. Perturbation of Nuclear Hormone Receptors by Endocrine Disrupting Chemicals: Mechanisms and Pathological Consequences of Exposure. Cells 2019, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leso, V.; Ercolano, M.L.; Cioffi, D.L.; Iavicoli, I. Occupational Chemical Exposure and Breast Cancer Risk According to Hormone Receptor Status: A Systematic Review. Cancers (Basel) 2019, 11, 1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnow, P.; Tralau, T.; Luch, A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin. Drug Metab. Toxicol. 2019, 15, 219–229. [Google Scholar] [CrossRef] [PubMed]
- McArdle, M.E.; Freeman, E.L.; Staveley, J.P.; Ortego, L.S.; Coady, K.K.; Weltje, L.; Weyers, A.; Wheeler, J.R.; Bone, A.J. Critical Review of Read-Across Potential in Testing for Endocrine-Related Effects in Vertebrate Ecological Receptors. Environ. Toxicol. Chem. 2020, 39, 739–753. [Google Scholar] [CrossRef]
- Mansouri, K.; Kleinstreuer, N.; Abdelaziz, A.M.; Alberga, D.; Alves, V.M.; Andersson, P.L.; Andrade, C.H.; Bai, F.; Balabin, I.; Ballabio, D.; et al. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environ. Health Perspect. 2020, 128, 27002. [Google Scholar] [CrossRef]
- Grimaldi, M.; Boulahtouf, A.; Delfosse, V.; Thouennon, E.; Bourguet, W.; Balaguer, P. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors. Front. Endocrinol. (Lausanne) 2015, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Dallel, S.; Tauveron, I.; Brugnon, F.; Baron, S.; Lobaccaro, J.M.A.; Maqdasy, S. Liver X Receptors: A Possible Link between Lipid Disorders and Female Infertility. Int. J. Mol. Sci. 2018, 19, 2177. [Google Scholar] [CrossRef] [Green Version]
- Mazaira, G.I.; Zgajnar, N.R.; Lotufo, C.M.; Daneri-Becerra, C.; Sivils, J.C.; Soto, O.B.; Cox, M.B.; Galigniana, M.D. The Nuclear Receptor Field: A Historical Overview and Future Challenges. Nucl. Receptor Res. 2018, 5, 101320. [Google Scholar] [CrossRef]
- Watanabe, M.; Kakuta, H. Retinoid X Receptor Antagonists. Int. J. Mol. Sci. 2018, 19, 2354. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.N.; Thatcher, S.E.; Larian, N.; English, V.; Soman, S.; Morris, A.J.; Weng, J.; Stromberg, A.; Swanson, H.I.; Pearson, K.; et al. Effects of Aryl Hydrocarbon Receptor Deficiency on PCB-77-Induced Impairment of Glucose Homeostasis during Weight Loss in Male and Female Obese Mice. Environ. Health Perspect. 2019, 127, 77004. [Google Scholar] [CrossRef]
- Meijer, F.A.; Leijten-van de Gevel, I.A.; de Vries, R.M.J.M.; Brunsveld, L. Allosteric small molecule modulators of nuclear receptors. Mol. Cell Endocrinol. 2019, 485, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Saha, T.; Makar, S.; Swetha, R.; Gutti, G.; Singh, S.K. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur. J. Med. Chem. 2019, 177, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Smieško, M. Ligand Pathways in Nuclear Receptors. J. Chem. Inf. Model. 2019, 59, 3100–3109. [Google Scholar] [CrossRef]
- Weikum, E.R.; Liu, X.; Ortlund, E.A. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018, 27, 1876–1892. [Google Scholar] [CrossRef] [PubMed]
- Veras Ribeiro Filho, H.; Tambones, I.L.; Mariano Gonçalves Dias, M.; Bernardi Videira, N.; Bruder, M.; Amorim Amato, A.; Migliorini Figueira, A.C. Modulation of nuclear receptor function: Targeting the protein-DNA interface. Mol. Cell Endocrinol. 2019, 484, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tecalco-Cruz, A.C. Molecular pathways involved in the transport of nuclear receptors from the nucleus to cytoplasm. J. Steroid Biochem. Mol. Biol. 2018, 178, 36–44. [Google Scholar] [CrossRef]
- Baker, J.D.; Ozsan, I.; Rodriguez Ospina, S.; Gulick, D.; Blair, L.J. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int. J. Mol. Sci. 2018, 20, 79. [Google Scholar] [CrossRef] [Green Version]
- Gabler, M.; Kramer, J.; Schmidt, J.; Pollinger, J.; Weber, J.; Kaiser, A.; Löhr, F.; Proschak, E.; Schubert-Zsilavecz, M.; Merk, D. Allosteric modulation of the farnesoid X receptor by a small molecule. Sci. Rep. 2018, 8, 6846. [Google Scholar] [CrossRef]
- Azhagiya Singam, E.R.; Tachachartvanich, P.; La Merrill, M.A.; Smith, M.T.; Durkin, K.A. Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor. J. Phys. Chem. B 2019, 123, 7657–7666. [Google Scholar] [CrossRef]
- D’Aniello, E.; Iannotti, F.A.; Falkenberg, L.G.; Martella, A.; Gentile, A.; De Maio, F.; Ciavatta, M.L.; Gavagnin, M.; Waxman, J.S.; Di Marzo, V.; et al. In Silico Identification and Experimental Validation of (-)-Muqubilin A, a Marine Norterpene Peroxide, as PPARα/γ-RXRα Agonist and RARα Positive Allosteric Modulator. Mar. Drugs 2019, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Fay, K.A.; Villeneuve, D.L.; Swintek, J.; Edwards, S.W.; Nelms, M.D.; Blackwell, B.R.; Ankley, G.T. Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development. Toxicol. Sci. 2018, 163, 500–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clippinger, A.J.; Allen, D.; Behrsing, H.; BéruBé, K.A.; Bolger, M.B.; Casey, W.; DeLorme, M.; Gaça, M.; Gehen, S.C.; Glover, K.; et al. Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol. In Vitr. 2018, 52, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Dal Negro, G.; Eskes, C.; Belz, S.; Bertein, C.; Chlebus, M.; Corvaro, M.; Corvi, R.; Dhalluin, S.; Halder, M.; Harvey, J.; et al. One science-driven approach for the regulatory implementation of alternative methods: A multi-sector perspective. Regul. Toxicol. Pharmacol. 2018, 99, 33–49. [Google Scholar] [CrossRef]
- Sewell, F.; Gellatly, N.; Beaumont, M.; Burden, N.; Currie, R.; de Haan, L.; Hutchinson, T.H.; Jacobs, M.; Mahony, C.; Malcomber, I.; et al. The future trajectory of adverse outcome pathways: A commentary. Arch. Toxicol. 2018, 92, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- Terron, A.; Bennekou, S.H. Towards a regulatory use of alternative developmental neurotoxicity testing (DNT). Toxicol. Appl. Pharmacol. 2018, 354, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Prior, H.; Casey, W.; Kimber, I.; Whelan, M.; Sewell, F. Reflections on the progress towards non-animal methods for acute toxicity testing of chemicals. Regul. Toxicol. Pharmacol. 2019, 102, 30–33. [Google Scholar] [CrossRef]
- Thomas, R.S.; Bahadori, T.; Buckley, T.J.; Cowden, J.; Deisenroth, C.; Dionisio, K.L.; Frithsen, J.B.; Grulke, C.M.; Gwinn, M.R.; Harrill, J.A.; et al. The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicol. Sci. 2019, 169, 317–332. [Google Scholar] [CrossRef] [Green Version]
- Kavlock, R.; Chandler, K.; Houck, K.; Hunter, S.; Judson, R.; Kleinstreuer, N.; Knudsen, T.; Martin, M.; Padilla, S.; Reif, D.; et al. Update on EPA’s ToxCast program: Providing high throughput decision support tools for chemical risk management. Chem. Res. Toxicol. 2012, 25, 1287–1302. [Google Scholar] [CrossRef]
- Judson, R.; Houck, K.; Martin, M.; Knudsen, T.; Thomas, R.S.; Sipes, N.; Shah, I.; Wambaugh, J.; Crofton, K. In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast programme. Basic Clin. Pharmacol. Toxicol. 2014, 115, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Kleinstreuer, N.C.; Yang, J.; Berg, E.L.; Knudsen, T.B.; Richard, A.M.; Martin, M.T.; Reif, D.M.; Judson, R.S.; Polokoff, M.; Dix, D.J.; et al. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 2014, 32, 583–591. [Google Scholar] [CrossRef]
- Tice, R.R.; Austin, C.P.; Kavlock, R.J.; Bucher, J.R. Improving the human hazard characterization of chemicals: A Tox21 update. Environ. Health Perspect. 2013, 121, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judson, R.S.; Magpantay, F.M.; Chickarmane, V.; Haskell, C.; Tania, N.; Taylor, J.; Xia, M.; Huang, R.; Rotroff, D.M.; Filer, D.L.; et al. Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor. Toxicol. Sci. 2015, 148, 137–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourches, D.; Ash, J. 4D-quantitative structure-activity relationship modeling: Making a comeback. Expert Opin. Drug Discov. 2019, 14, 1227–1235. [Google Scholar] [CrossRef]
- Hisaki, T.; Kaneko, M.A.N.; Hirota, M.; Matsuoka, M.; Kouzuki, H. Integration of read-across and artificial neural network-based QSAR models for predicting systemic toxicity: A case study for valproic acid. J. Toxicol. Sci. 2020, 45, 95–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Kleinstreuer, N.C.; Fourches, D. Hierarchical Quantitative Structure-Activity Relationship Modeling Approach for Integrating Binary, Multiclass, and Regression Models of Acute Oral Systemic Toxicity. Chem. Res. Toxicol. 2020, 33, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, I.L.; Gómez-Nieto, M.Á. Building Highly Reliable Quantitative Structure-Activity Relationship Classification Models Using the Rivality Index Neighborhood Algorithm with Feature Selection. J. Chem. Inf. Model. 2020, 60, 133–151. [Google Scholar] [CrossRef]
- Santos, K.L.B.D.; Cruz, J.N.; Silva, L.B.; Ramos, R.S.; Neto, M.F.A.; Lobato, C.C.; Ota, S.S.B.; Leite, F.H.A.; Borges, R.S.; Silva, C.H.T.P.D.; et al. Identification of Novel Chemical Entities for Adenosine Receptor Type 2A Using Molecular Modeling Approaches. Molecules 2020, 25, 1245. [Google Scholar] [CrossRef] [Green Version]
- Danishuddin Khan, A.U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today 2016, 21, 1291–1302. [Google Scholar] [CrossRef]
- Dutt, R.; Madan, A.K. Development and application of novel molecular descriptors for predicting biological activity. Med. Chem. Res. 2017, 26, 1988–2006. [Google Scholar] [CrossRef]
- Idakwo, G.; Thangapandian, S.; Luttrell, J., 4th; Zhou, Z.; Zhang, C.; Gong, P. Deep Learning-Based Structure-Activity Relationship Modeling for Multi-Category Toxicity Classification: A Case Study of 10K Tox21 Chemicals With High-Throughput Cell-Based Androgen Receptor Bioassay Data. Front. Physiol. 2019, 10, 1044. [Google Scholar] [CrossRef] [Green Version]
- Uesawa, Y. Quantitative structure-activity relationship analysis using deep learning based on a novel molecular image input technique. Bioorg. Med. Chem. Lett. 2018, 28, 3400–3403. [Google Scholar] [CrossRef] [PubMed]
- Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity Prediction using Deep Learning. Front. Environ. Sci. 2016, 3, 80. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Wei, G.W. Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks. J. Chem. Inf. Model. 2018, 58, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaka, Y.; Uesawa, Y. Optimization of a Deep-Learning Method Based on the Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-Image-Input Technique for Quantitative Structure-Activity Relationship (QSAR) Analysis. Front. Bioeng. Biotechnol. 2019, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaka, Y.; Uesawa, Y. Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library. Int. J. Mol. Sci. 2019, 20, 4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaka, Y.; Uesawa, Y. DeepSnap-Deep Learning Approach Predicts Progesterone Receptor Antagonist Activity with High Performance. Front. Bioeng. Biotechnol. 2020, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaka, Y.; Hosaka, T.; Ogaito, A.; Yoshinari, K.; Uesawa, Y. Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning. Deep Learning. Molecules 2020, 25, 1317. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://tripod.nih.gov/tox21/challenge/index.jsp (accessed on 12 June 2020).
- Mayr, A.; Klambauer, G.; Unterthiner, T.; Steijaert, M.; Wegner, J.K.; Ceulemans, H.; Clevert, D.A.; Hochreiter, S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 2018, 9, 5441–5451. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Pei, J.; Lai, L. Deep Learning Based Regression and Multiclass Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction. J. Chem. Inf. Model. 2017, 57, 2672–2685. [Google Scholar] [CrossRef]
- Ambe, K.; Ishihara, K.; Ochibe, T.; Ohya, K.; Tamura, S.; Inoue, K.; Yoshida, M.; Tohkin, M. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors. Toxicol. Sci. 2018, 162, 667–675. [Google Scholar] [CrossRef]
- Fernandez, M.; Ban, F.; Woo, G.; Hsing, M.; Yamazaki, T.; LeBlanc, E.; Rennie, P.S.; Welch, W.J.; Cherkasov, A. Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images. J. Chem. Inf. Model. 2018, 58, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Madore, M.; Glover, K.P.; Feasel, M.G.; Wallqvist, A. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity. Toxicol. Sci. 2018, 164, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Terry, J.G.; Wang, J.; Nath, V.; Bermudez, C.; Bao, S.; Parvathaneni, P.; Carr, J.J.; Landman, B.A. Coronary Calcium Detection using 3D Attention Identical Dual Deep Network Based on Weakly Supervised Learning. Proc. SPIE Int. Soc. Opt. Eng. 2019, 10949, 1094917. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for Saliency Maps. arXiv 2018, arXiv:1810.03292v2. Available online: https://arxiv.org/abs/1810.03292 (accessed on 12 June 2020).
- Fiosina, J.; Fiosins, M.; Bonn, S. Explainable Deep Learning for Augmentation of Small RNA Expression Profiles. J. Comput. Biol. 2019, 27, 234–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhle, M.; Eitel, F.; Weygandt, M.; Ritter, K. Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer’s Disease Classification. Front. Aging Neurosci. 2019, 11, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; Wattenberg, M. SmoothGrad: Removing noise by adding noise. arXiv 2017, arXiv:1706.03825v1. Available online: https://arxiv.org/abs/1706.03825 (accessed on 12 June 2020).
- Goh, G.S.W.; Lapuschkin, S.; Weber, L.; Samek, W.; Binder, A. Understanding Integrated Gradients with SmoothTaylor for Deep Neural Network Attribution. arXiv 2020, arXiv:2004.10484v1. Available online: https://arxiv.org/abs/2004.10484 (accessed on 12 June 2020).
- Paul-Friedman, K.; Martin, M.; Crofton, K.M.; Hsu, C.W.; Sakamuru, S.; Zhao, J.; Xia, M.; Huang, R.; Stavreva, D.A.; Soni, V.; et al. Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. Environ. Health Perspect. 2019, 127, 97009. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Wang, T.; Yuan, C.; Zhong, S.; Guan, T.; Li, Z.; Wang, Y.; Yu, H.; Luo, Q.; et al. Estrogenicity of halogenated bisphenol A: In vitro and in silico investigations. Arch. Toxicol. 2018, 92, 1215–1223. [Google Scholar] [CrossRef]
- Smirnova, O.V. Competitive Agonists and Antagonists of Steroid Nuclear Receptors: Evolution of the Concept or Its Reversal. Biochemistry (Moscow) 2015, 80, 1227–1234. [Google Scholar] [CrossRef]
- Liu, S.; Han, S.J.; Smith, C.L. Cooperative activation of gene expression by agonists and antagonists mediated by estrogen receptor heteroligand dimer complexes. Mol. Pharmacol. 2013, 83, 1066–1077. [Google Scholar] [CrossRef] [Green Version]
- Dotzlaw, H.; Papaioannou, M.; Moehren, U.; Claessens, F.; Baniahmad, A. Agonist-antagonist induced coactivator and corepressor interplay on the human androgen receptor. Mol. Cell Endocrinol. 2003, 213, 79–85. [Google Scholar] [CrossRef]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, K.L.; Farman, H.; Henning, P.; Lionikaite, V.; Movérare-Skrtic, S.; Wu, J.; Ryberg, H.; Koskela, A.; Gustafsson, J.Å.; Tuukkanen, J.; et al. The role of membrane ERα signaling in bone and other major estrogen responsive tissues. Sci. Rep. 2016, 6, 29473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, K.; Yamamoto, N.; Ohyabu, Y.; Morikyu, T.; Ishige, H.; Albers, M.; Endo, Y. Mechanism of the tissue-specific action of the selective androgen receptor modulator S-101479. Biol. Pharm. Bull. 2013, 36, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Arao, Y.; Hamilton, K.J.; Ray, M.K.; Scott, G.; Mishina, Y.; Korach, K.S. Estrogen receptor α AF-2 mutation results in antagonist reversal and reveals tissue selective function of estrogen receptor modulators. Proc. Natl. Acad. Sci. USA 2011, 108, 14986–14991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spillman, M.A.; Manning, N.G.; Dye, W.W.; Sartorius, C.A.; Post, M.D.; Harrell, J.C.; Jacobsen, B.M.; Horwitz, K.B. Tissue-specific pathways for estrogen regulation of ovarian cancer growth and metastasis. Cancer Res. 2010, 70, 8927–8936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoch, G.A.; D’Arcy, B.; Stihle, M.; Burger, D.; Bär, D.; Benz, J.; Thoma, R.; Ruf, A. Molecular switch in the glucocorticoid receptor: Active and passive antagonist conformations. J. Mol. Biol. 2010, 395, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Titus, S.; Neumann, S.; Zheng, W.; Southall, N.; Michael, S.; Klumpp, C.; Yasgar, A.; Shinn, P.; Thomas, C.J.; Inglese, J.; et al. Quantitative high-throughput screening using a live-cell cAMP assay identifies small-molecule agonists of the TSH receptor. J. Biomol. Screen 2008, 13, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Sakamuru, S.; Martin, M.T.; Reif, D.M.; Judson, R.S.; Houck, K.A.; Casey, W.; Hsieh, J.H.; Shockley, K.R.; Ceger, P.; et al. Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci. Rep. 2014, 4, 5664. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Xia, M.; Cho, M.H.; Sakamuru, S.; Shinn, P.; Houck, K.A.; Dix, D.J.; Judson, R.S.; Witt, K.L.; Kavlock, R.J.; et al. Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ. Health Perspect. 2011, 119, 1142–1148. [Google Scholar] [CrossRef]
- Chen, Y.; Sakamuru, S.; Huang, R.; Reese, D.H.; Xia, M. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay. Toxicol. In Vitro 2016, 32, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Xia, M.; Sakamuru, S.; Zhao, J.; Shahane, S.A.; Attene-Ramos, M.; Zhao, T.; Austin, C.P.; Simeonov, A. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat. Commun. 2016, 7, 10425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.; Zhao, J.; Wang, H.; Xia, M. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators. Methods Mol. Biol. 2016, 1473, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, C.T.; Hsieh, J.H.; Zhao, J.; Huang, R.; Xia, M.; Martin, N.; Gao, X.; Dixon, D.; Auerbach, S.S.; Witt, K.L.; et al. Development of Novel Cell Lines for High-Throughput Screening to Detect Estrogen-Related Receptor Alpha Modulators. SLAS Discov. 2017, 22, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Xia, M.; Sakamuru, S.; Zhao, J.; Lynch, C.; Zhao, T.; Zhu, H.; Austin, C.P.; Simeonov, A. Expanding biological space coverage enhances the prediction of drug adverse effects in human using in vitro activity profiles. Sci. Rep. 2018, 8, 3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.; Zhao, J.; Huang, R.; Kanaya, N.; Bernal, L.; Hsieh, J.H.; Auerbach, S.S.; Witt, K.L.; Merrick, B.A.; Chen, S.; et al. Identification of Estrogen-Related Receptor α Agonists in the Tox21 Compound Library. Endocrinology 2018, 159, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.; Zhao, J.; Sakamuru, S.; Zhang, L.; Huang, R.; Witt, K.L.; Merrick, B.A.; Teng, C.T.; Xia, M. Identification of Compounds That Inhibit Estrogen-Related Receptor Alpha Signaling Using High-Throughput Screening Assays. Molecules 2019, 24, 841. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.; Mackowiak, B.; Huang, R.; Li, L.; Heyward, S.; Sakamuru, S.; Wang, H.; Xia, M. Identification of Modulators That Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicol. Sci. 2019, 167, 282–292. [Google Scholar] [CrossRef]
- Wei, Z.; Sakamuru, S.; Zhang, L.; Zhao, J.; Huang, R.; Kleinstreuer, N.C.; Chen, Y.; Shu, Y.; Knudsen, T.B.; Xia, M. Identification and Profiling of Environmental Chemicals That Inhibit the TGFβ/SMAD Signaling Pathway. Chem. Res. Toxicol. 2019, 32, 2433–2444. [Google Scholar] [CrossRef]
- Xia, M.; Huang, R.; Guo, V.; Southall, N.; Cho, M.H.; Inglese, J.; Austin, C.P.; Nirenberg, M. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc. Natl. Acad. Sci. USA 2009, 106, 2412–2417. [Google Scholar] [CrossRef] [Green Version]
- Inglese, J.; Auld, D.S.; Jadhav, A.; Johnson, R.L.; Simeonov, A.; Yasgar, A.; Zheng, W.; Austin, C.P. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. USA 2006, 103, 11473–11478. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jadhav, A.; Southal, N.; Huang, R.; Nguyen, D.T. A grid algorithm for high throughput fitting of dose-response curve data. Curr. Chem. Genomics 2010, 4, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Molecular Networks GmbH, Nürnberg, Germany. Available online: https://www.mn-am.com/products/corina (accessed on 12 June 2020).
- Available online: http://image-net.org/challenges/LSVRC/2012/browse-synsets (accessed on 12 June 2020).
- Available online: http://www.image-net.org/index (accessed on 12 June 2020).
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, Y.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842v1. [Google Scholar]
- Yang, Y.; Yan, L.F.; Zhang, X.; Han, Y.; Nan, H.Y.; Hu, Y.C.; Hu, B.; Yan, S.L.; Zhang, J.; Cheng, D.L.; et al. Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning. Front. Neurosci. 2018, 12, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Lee, H.E.; Choi, Y.H.; Lee, S.J.; Jeon, J.S. CNN-based diagnosis models for canine ulcerative keratitis. Sci. Rep. 2019, 9, 14209. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Chun, S.M.; Kim, J.C.; Shin, H.I. Obesity cutoff values in Korean men with motor complete spinal cord injury: Body mass index and waist circumference. Spinal Cord 2019, 57, 110–116. [Google Scholar] [CrossRef]
- Liang, K.; Wang, C.; Yan, F.; Wang, L.; He, T.; Zhang, X.; Li, C.; Yang, W.; Ma, Z.; Ma, A.; et al. HbA1c Cutoff Point of 5.9% Better Identifies High Risk of Progression to Diabetes among Chinese Adults: Results from a Retrospective Cohort Study. J. Diabetes Res. 2018, 2018, 7486493. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.jmp.com/support/help/en/15.1/index.shtml#page/jmp/example-of-all-pairs-tukey-hsd-test.shtml (accessed on 12 June 2020).
Sample Availability: Samples of the compounds are available from the authors. |
PubChem AID | Model Names | NRs | Activity | Reporter Gene Assay | Cell Lines | Agonist/Antagonist | Positive Control |
---|---|---|---|---|---|---|---|
720719 | GR_ago | glucocorticoid receptor | agonist | beta-lactamase | HeLa | Dexamethasone | |
720725 | GR_ant | glucocorticoid receptor | antagonist | beta-lactamase | HeLa | Dexamethasone | Mifeprostone |
743053 | Arfull_ago | androgen receptor | agonist | beta-lactamase | HEK293 | R1881 | |
743054 | ARfull_ant | androgen receptor | antagonist | luciferase | MDA-MB | R1881 | Nilutamide |
743063 | Arlbd_ant | androgen receptor | antagonist | beta-lactamase | HEK293 | R1881 | Cyproterone acetate |
743067 | TR_ant | thyroid receptor | antagonist | luciferase | GH3 | T3 | NA |
743077 | Erlbd_ago | estrogen receptor alpha | agonist | beta-lactamase | HEK293 | 17beta-estradiol | |
743078 | ERlbd_ant | estrogen receptor alpha | antagonist | beta-lactamase | HEK293 | 17beta-estradiol | 4-Hydroxy tamoxifen |
743091 | ERfull_ant | estrogen receptor alpha | antagonist | luciferase | BG1 | 17beta-estradiol | 4-Hydroxy tamoxifen |
743122 | AhR_ago | aryl hydrocarbon receptor | agonist | luciferase | HepG2 | Omeprazole | |
743140 | PPARg_ago | peroxisome proliferator-activated receptor gamma | agonist | beta-lactamase | HEK293H | Rosiglitazone | |
743226 | PPARd_ant | peroxisome proliferator-activated receptor delta | antagonist | beta-lactamase | HEK293H | L-165041 | MK886 |
743227 | PPARd_ago | peroxisome proliferator-activated receptor delta | agonist | beta-lactamase | HEK293H | L-165041 | |
743239 | FXR_ago | farnesoid-X-receptor | agonist | beta-lactamase | HEK293T | Chenodeoxycholic acid | |
743240 | FXR_ant | farnesoid-X-receptor | antagonist | beta-lactamase | HEK293T | Chenodeoxycholic acid | Guggulsterone |
743241 | VDR_ago | vitamin D receptor | agonist | beta-lactamase | HEK293T | 1alpha, 25-Dihydroxy Vitamin D3 | |
743242 | VDR_ant | vitamin D receptor | antagonist | beta-lactamase | HEK293T | 1alpha, 25-Dihydroxy Vitamin D3 | NA |
1159523 | ROR_ant | retinoid-related orphan receptor gamma | antagonist | luciferase | CHO | Doxycycline Hyclate | TO-901317 |
1159531 | RXR_ago | retinoid X nuclear receptor alpha | agonist | beta-lactamase | HEK293T | 9-cis retinoic acid | |
1159555 | RAR_ant | retinoic acid receptor | antagonist | luciferase | C3RL4 | Retinol | ER50891 |
1224893 | CAR_ant | constitutive androstane receptor | antagonist | luciferase | HepG2 | CITCO | PK11195 |
1224895 | TSHR_ago | thyroid stimulating hormone receptor | agonist | cAMP assay | HEK293 | Ro20-1724 | thyroid stimulating hormone |
1259247 | ARfull2_ant | androgen receptor | antagonist | luciferase | MDA-MB | R1881 | Nilutamide |
1259248 | ERfull_estra_ant | estrogen receptor alpha | antagonist | luciferase | BG1 | 17beta-estradiol | 4-Hydroxy tamoxifen |
1259387 | ARant_ago | androgen receptor | agonist | luciferase | MDA-MB | Nilutamide | R1881 |
1259391 | ERaant_ago | estrogen receptor alpha | agonist | luciferase | BG1 | ICI-182,780 | 17beta-Estradiol |
1259393 | TSHR2_ago | thyroid stimulating hormone receptor | agonist | cAMP assay | HEK293 | Ro20-1724 | thyroid stimulating hormone |
1259394 | ERb_ago | estrogen receptor beta | agonist | beta-lactamase | HEK293T | 17beta-Estradiol | |
1259395 | TSHR_ant | thyroid stimulating hormone receptor | antagonist | cAMP assay | HEK293 | thyroid stimulating hormone | Ro20-1724 |
1259396 | ERb2_ant | estrogen receptor beta | antagonist | beta-lactamase | HEK293T | 17beta-Estradiol | 4-Hydroxy tamoxifen |
1259403 | ERR_ant | estrogen related receptor | antagonist | luciferase | HEK293 | XTC790 | |
1259404 | ERR_ago | estrogen related receptor | agonist | luciferase | HEK293 | Genistein | |
1347033 | PXR_ago | pregnane X receptor | agonist | luciferase | HepG2 | Rifampicin | |
1347036 | PR_ago | progesterone receptor | agonist | beta-lactamase | HEK293T | R5020 | |
1347038 | TRHR_ant | thyrotropin-releasing hormone receptor | antagonist | intracellular calcium assay | HEK293 | thyrotropin-releasing hormone | midazolam |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaka, Y.; Uesawa, Y. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library. Molecules 2020, 25, 2764. https://doi.org/10.3390/molecules25122764
Matsuzaka Y, Uesawa Y. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library. Molecules. 2020; 25(12):2764. https://doi.org/10.3390/molecules25122764
Chicago/Turabian StyleMatsuzaka, Yasunari, and Yoshihiro Uesawa. 2020. "Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library" Molecules 25, no. 12: 2764. https://doi.org/10.3390/molecules25122764
APA StyleMatsuzaka, Y., & Uesawa, Y. (2020). Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library. Molecules, 25(12), 2764. https://doi.org/10.3390/molecules25122764